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PARTICLE DYNAMICS IN LINEAR RESONANCE ACCELERATORS.

I. M. KapchinSlciy.
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INTRODUCTION.

The linear accelerators of the charged/loaded atomic particles

at present increasingly more widely are applied in experimental

physics and in some areas of technology. This caused the considerable

progress in the development both the theoretical problems, connected

with particle dynamics in the linear accelerators and the engineering

questions, connected with the constructions/designs of the

accelerating systems and auxiliary technological equipment. Basic

advantage of linear accelerators - simplicity of the beam extraction

of the accelerated particles. Linear accelerator makes it possible to

obtain the well collimated beam with the relatively greater

instantaneous intensity. One should note also that the linear

accelerators, as a rule, are reliable. Therefore they proved to be

the most adequate/approaching type of injector for the powerful/thick

proton synchrotrons. However, linear accelerators are convenient also

as the independent accelerators, since they can work in the

continuous duty and give in this case beam with the large

average/mean intensity.
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Upon the acceleration of 4ons to the energies, which exceed 5

MeV, usually is utilized high-frequency accelerating field, which

makes it possible to pass the particles through the large number of

accelerating gaps and, therefore, to restrict the maximum values of

stresses/voltages in the accelerator. High energy particles with the

given speed, which approaches unity, can be accelerated in the field

of the traveling wave. In the high-frequency field the beam

decomposes into the clusters. The frequency of bunches coincides with

the frequency of accelerating voltage. Therefore such accelerators

are called, according to the steady terminology, resonance.

Page 4.

In the linear resonance accelerators always can be isolated the

fundamental harmonic of the component of accelerating field, which is

spread in the direction of acceleration. As it will be shown,

precisely, this harmonic gives the basic contribution to the particle

acceleration. In traveling-waves accelerator is formed/shaped only

this harmonic. In the general case accelerating field contains wide

the spectrum of running harmonics; the fundamental harmonic, isolated

above, is called the equivalent traveling wave. Linear resonance

accelerators, from the point of view of particle dynamics in
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accelerating field, can be divided into the accelerators of two

types: in first type accelezators the phase speed of the equivalent

traveling wave is lower than the speed of light; in second type

accelerators the phase speed of the equivalent traveling wave is

equal to the speed of light. In the first case phase wave velocity

monotonically grows/rises, and the longitudinal velocities of

particles vary relative to the instantaneous value/significance of

phase speed. The secondly longitudinal particle motion is threshold.

These differences in the particle motion determine many special

features/peculiarities of each type of accelerator (capture of

particles in acceleration mode, formation of clusters, etc.). First

type linear accelerators are utilized for accelerating the heavy

particles whose given speed remains substantially smaller unity up to

the exit energy. The initial sections of the electron accelerator (in

which occurs the grouping and the preliminary dispersal/acceleration

of electrons) are also first type accelerators. However, due to a

small rest mass electrons acquire the speeds, which approach the

speed of light, even with the energy several mega-electron-volts, and

further acceleration of electrons is conducted in second type

accelerator.

With an increase in the energy of particles is facilitated the

beam focusing. This is connected, in the first place, with the

decrease of the angular scatter of the trajectories of the
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accelerated particles, and in the second place, with the decrease of

the Coulomb pushing apart of particles in the beam. It is natural

that questions of focusing prove to be most serious precisely during

the construction of first type linear accelerators, which leads to

the considerable complication of the theory of particle motion in

these accelerators.

Subsequently let us examine in essence first type linear

resonance accelerators, intended for accelerating the ions. However,

in the appropriate places will be completed transition to the maximum

permissible value/significance of phase speed Va = c.

One of the most important characteristics of beam of particles,

injected into the linear accelerator, is its phase volume.

Page 5.

The phase volume of beam is determined by the disordered scatter of

particles on the attitude and by speeds. In accordance with

Liouville's theorem the phase volume is a value invariant.

Liouville's theorem is valid under specific conditions which with a

sufficient accuracy are always satisfied in the linear accelerators.

Any linear accelerator can take and accelerate beam of particles,

limited by certain finite quantity of phase volume. This value is
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determined by the capacity of this accelerator. In practice the phase

volumes of the beams, generated by different ion sources, prove to be

comparable in the value with the capacity of accelerators or even

exceed it. The fact indicated leads to the specific problems which

must be solved during the design of ionic sources and linear

accelerators.

Particle motion in the accelerating and focusing fields is

connected both with the action of the proper field of beam and with

the disordered scatter of thermal particle speed, the determined

phase volume of beam. If i4 is disregarded by both factors, it proves

to be sufficient to examine the motion of one particle in the

assigned applied fields. However, already accumulated experiment

design and operation of contemporary linear accelerators showed that

the factors indicated should be considered. If particle density in

the phase space of beam is sufficiently great, it is possible to

disregard the scatter of thermal particle speed. But if phase density

is small, and the phase volume, occupied with the particles of beam,

is relatively great, admissibly disregard/neglect the pushing apart

Coulomb forces. In many practically important cases it is necessary

to consider with the fact that effects of both factors mentioned

above are commensurated. Neglect of the space charge of beam or by

the scatter of thermal velocities can lead to the significant errors

during the calculation of the parameters of accelerator.

L.
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An increase in the intensity of the accelerated beams in proton

synchrotrons and respectively in the linear accelerators - injectors

- is at present one of the urgent problems of accelerative

technology. Therefore the problems of the acceleration of beams with

the high pulse intensity were especially intensely studied

experimentally and theoretically into the latter several years both

in the USSR and abroad.

Page 6.

Now already there are monographs with the systemati7ed presentation

of questions of particle dynamics in linear resonance accelerators

(1-31, but the theory of intense beams, connected with the

simultaneous account of final phase volume and final beam current,

even on I could find a sufficient reflection. Goal of this book - to

a certain extent to complete a deficiency/lack in the literature on

the questions indicated. In the first two thapters is examined

particle dynamics in the beams with the negligible current density.

The material of these Ehapters is constructed so as to first isolate

the basic questions with which we encounter in the examination of

beams with the essential space charge.
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In contrast to the cyclic ones in the linear particle

accelerators they are accelerated for a smalL time interval and

acquire high energy on the relatively short path. In view of the

short time of interaction of particle with the field in the !-near

accelerator different resonance effects, which lead to the loss of

beam in the cyclic accelerators, have comparatively low

value/significance in the theory of linear accelerators. On the other

hand, due to the rapid set of energy in the linear accelerator

becomes very essential the effect of defocusing of particles by

accelerating field. These special features/peculiarities lead to the

fact that the theory of particle motion in the cyclic accelerators

both in the examination of the beams of zero intensity and during the

analysis of the dynamics of intense beams.

The author hopes that the book will prove to be useful and to

specialists, who do not work in the area of accelerative technology,

but by the problems of the beam shaping of high intensity interesting

in other areas of technology.

The author expresses deep gratitude to D. G. Koshkarev and V. K.

Plotnikov for the valuable discussions, and also to B. I. Bondaryev

and K. I. Guseva for the composition of the abstract of lectures,

placed as the basis of the book.
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Chapter 1.

Longitudinal vibrations of particles in beams w.th the negligible

density of space charge.

S1.1. Dynamics of the synchronous particle, which moves along the

axis of accelerator.

Let the charged particle beam be accelerated in the field of the

running simple harmonic wave with the longitudinal component

E - Ecos u -- k- zd: ,1.

Henceforth we will use the Cartesian coordinate system with z axis,

directed along the axis of linear accelerator. Phase wave velocity

L- we will consider the assigned monotonically increasing function of

the longitudinal coordinate z:

k (z ) = "--- k -  1.2 1

Let us assume vo <c Propagation of the traveling wave with the phase

speed, the lower speed of light/world, possibly, in particular, in

the waveguide, loaded with appropriate diaphragms [1, 4-6]. Let us
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isolate in the beam certain particle whose speed at each moment of

time coincides with phase wave velocity, which accompanies particle.

This particle, moving at the current point of wave with certain

fixed/recorded phase ,.. it will test/experience the action of the

longitudinal force

F- ='E,'0, _

In the conformity with expression (1.3) phase %, is counted off from

the moment of time with which the field at the particular point

reaches maximum value/significance. Let us select for certainty e>0.

Since particle acceleration is determined by force F:. for each given

value cos%.>0 it can be selected the amplitude of the traveling wave

E (z), which ensures the current equality to phase wave velocity and

longitudinal velocity of particle, in other words, that ensures the

retention/preservation/maintaining assigned phase 4

Page 8.

The particle whose speed coincides at each moment of time with phase

wave velocity, is called synchronous particle, and the fixed value of

phase %,- by synchronous phase.

It is obvious that in the extreme case of acceleration in the

traveling wave when vo=c, there is no synchronous particle in the
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beam.

Let us examine the case of accelerating the beam of particles in

the field of standing waves. The high-frequency system of linear

accelerator with the standing waves consists of the consecutive

accelerating gaps and, therefore, it has almost periodic structure.

In the simplest case each period of structure contains one

accelerating gap. The parameters of the periods of the accelerating

structure monotonically are changed along the longitudinal axis of

accelerator. For the proton linear accelerators in the range of

energies from 10 to 100 MeV is predominantly utilized the

high-frequency system, for the first time used on the accelerator in

Berkeley (7]. This system is the hollow cylindrical cavity, loaded

with drift tubes. Particles are accelerated in the clearance between

drift tubes and are shielded from the field (to the period when field

it has opposite direction) in the channels, arranged/located within

the tubes. Fig. l.la, schematically depicts the period of the

acceleration of high-frequency system with drift tubes. L,- length

of the n period of acceleration, equal to the distance between the

middles of adjacent drift tubes; g,- length of the accelerating

clearance. The periods of some other accelerating systems are

schematically given in Fig. 1.1, b-e. The accelerating

device/equipment in Fig. l.lb, consists of cylindrical

capacitor/condenser with two accelerating clearances, which adjoin

the grounded rings. Fig. 1.1i, d gives the diverse variants of the
"C.

use of the retarding spirals within metal tube [8].
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Fig. 1.1. Key: (1). drift half-tubes. (2). Cylindrical

capacitor/condenser. (3). Retarding spiral with grounded middle. (4).

Retarding spiral with grounded ends/leads. (5). Quarter-wave antenna.
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In Fig. l.!e field in the accelerating clearance is formed/shaped

with the aid of the cavity quarter-wave resonator. The accelerating

devices/equipment, shown in Fig. l.b, e,, until now, are utilized

only in the circular accelerators. All known at present electronic

linear accelerators are the waveguides, loaded with disks [6, 9-12).

In the accelerating systems of contemporary proton accelerators are

commonly used drift tubes [12-17).

Questions of radio-frequency technology of linear resonance

accelerato exceed the limits of the book. Therefore we will not

discuss comparative advantages and disadvantages those in different

accelerating structures, and also we will not examine new

developments in this region. Some questions, which relate to the

accelerating devices/equipment technique, are briefly examined in

work [21 and in other given sources. Let us note that further

presentation of the theory of particle motion in linear resonance

accelerators can be attributed with some unprincipled changes to any

accelerating structure. for the concreteness subsequently we will

have in mind the accelerating system with drift tubes.

The longitudinal component of high-frequency electrical field on

the axis of accelerating gap takes the form

E. (z, t) E W cos w. (1.4)
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Here EIz - law of amplitude distribution of the longitudinal

component of the field of standing wave along the axis in the n

period of the accelerating structure. We wi-l call particle in the

field of the standing wave of synchronous, if it flies certain

fixed/recorded point of each period of structure with the same phase

of high-frequency field. This point is called the electrical center

of period [7]. Let z._,, z.- coordinate of beginning and end/lead of

the n period of the accelerating structure. An energy gain of any

particle, which moves along the axis, at the length of period is

determined by the expression

W=.W.-W,_,=e \ Eg(z)cos w. ,.

where W - kinetic energy of the particle: W=(m-mo)c 2 . Will select

certain point z. within the period and will fix phase ,.- with which

synchronous particle is passed this point. Regarding the synchronous

phase, value/significance T, is retained one and the same in the

electrical center of each period of the accelerating structure. Th4

distance between the electrical centers of the adjacent periods of

structure synchronous particle flies for the time, multiple to the

period of high-frequency field (with the cophasal supply of

accelerating gaps).

Page 10.
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For the synchronous particle we have

where -- current longitudinal velocity of synchronous particle.

After substituting equality (1.6) into expression (1.5), we will

obtain

AW,- ecos (I E, zlcos .

-esin~o Eg W sin (dz, 1.7)

where X - wavelength of accelerating field in the free space; / -

given particle speed. The predominant effect of the

components/terms/addends in the right side of expression (1.7)

depends on the parity of function Ei:, relative to point z0 . If

function Ezi is close to the even (which corresponds to the

accelerating devices/equipment in Fig. l.la, 6, e), then predominates

the first term. But if function Eg(Z) is close to the odd (see Fig.

1.1 b, ), then predominates the second term. Let us assume that the

basic contribution to an energy gain gives the first term. Then

expression (1.7) is conveniently represented in the form

In

AW = e cos ,L, . E, (z) dz T,

where zn-i

Xi .

T t. (1.8)

\ Eg gZ) \ Eg,) dZ
Ln
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The value, determined by expression (1.8), is called the factor of

transit time. This factor depends substantially on the geometry of

field in the accelerating gap and on the particle speed. As will be

shown subsequently, the dependence of the factor of transit time on

the value of synchronous phase, clearly entering in the second member

of expression (1.8), and implicitly concealed/latent also in the

first member, it is unessential and in the first approximation,

disappears.

Value

,Eg(z)dz (1.9)
Ln-

let us name/call middle field on the axis of accelerator. This value

is equal to the amplitude of the longitudinal component of

accelerating field, accelerating structure averaged on the period.

Taking into account designations (1.8), (1.9) we will obtain

simple expression for an energy gain of synchronous particle in the

period of the accelerating structure

aW,=eEoT cos,.

Page 11.
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Simplicity of this expression is explained only by the fact that all

difficulties of calculating interaction of particle with the assigned

high-frequency field are transferred to the determination of the

factor of transit time. from initial expressions (1.4), (1.6) it

follows that the phase of field, in which the particle falls

substances the electrical center of period, must be counted off from

the moment/torque of the maximum of field.

Let us name/call first approximation to a factor of transit time
value IH---

in

where pp is determined by the equality

and p- given speed of synchronous particle at the end of the n

period of the accelerating structure. According to expression (1.11),

during the calculation of first approximation to a factor of transit

time for the field with the predominant even component (relative to

electrical center) the second term in expression (1.8) is

thrown/rejected, and particle speed in the period is assumed the

constant, equal to Pcr- If is assigned middle field on the axis, then

into equality (1.11) enters the first approximation to length of

period, determined by the expression

..-- k ,.. (j j
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Value k is called the multiplicity of the period of acceleration.

With the cophasal supply of accelerating gaps value k determines the

number of periods of high-frequency field, for which synchronous

particle flies the distance between the electrical centers of the

adjacent periods of structure. Repeatedly were proposed different

high-frequency systems with the noncophasal supply of accelerating

gaps. noncophasal supply is possible, if accelerating gaps are

electrically untied, for example, if adjacent periods in the

resonator, loaded with drift tubes, are divided by continuous

metallic partitions/baffles. in the simplest of such systems

L,=L=const. A similar system can be treated as system with the

variable/alternating multiplicity of the accelerating structure

L

or as system with the assigned multiplicity, but with a monotonically

decreasing equivalent wavelength of

L

Page 12.

With the assigned multiplicity k the first approximation to a

factor of transit time can be represented in the form
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T, E,( ) Cos 2,k 'd' -4'A

E, L, , - - (1.14)L?1

where A, - amplitude of the k cosinusoidal harmonic of the

three-dimensional/space resolution by Fourier of high-frequency

field. Formula (1.14) is convenient, if field distribution of

standing -ave in the accelerating gap they calculate, on the basis of

the appropriate boundary-value problem.

When the sizes/dimensions of the accelerating device/equipment

are small in comparison with the wavelength of high-frequency field,

it is convenient to utilize for calculating the factor of transit

time the semi-empirical method, based on the electrostatic

approximation/approach to goal (181. In the electrostatic

approximation/approach potential distribution in accelerating gap

V(s), where =z-z., it is possible to measure by simulation of

gap/interval with the aid of electrolytic bath. Since during

calculations of the factor of transittime are utilized the

experimental data, for decreasing the errors of calculation the

desirable curved of potential distribution not to differentiate, but

to integrate. Taking integral (1.11) in parts and taking into account

that E1 (t)dt=dV, we obtain
V i (:)sin k ;d,(.5To= (-1)h + v-q.---d,(.5

V L n Ln

where V. - complete potential drop along the axis of accelerating

gap.
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For calculating the parameters of the accelerating system it

suffices to utilize first approximations to factor of transit time

and length of the neriod of structure. Actually/reallv, ;. is

possible to show that the corrections of the second

approximation/approach in the middle fields in practice utilized in

the ionic linear accelerators prove to be negligible. These

corrections are caused by the inconstancy of the speed of synchronous

particle for the period of structure and by odd component of the

distribution of standing wave in the accelerating gap (in the systems

in Fig. 1.1, a, c, e). It is obvious that the position of electrical

center should be selected in such a way, as to maximally decrease odd

component of distribution (in the systems in Fig. l.l.a, c, e) or

even component (in the systems in Fig. b, c). In work [7) is examined

the selection of the position of electrical center for the

accelerating system with drift tubes. In this work it is proposed to

select the electrical center of each accelerating clearance z. in

such a way that the second member of expression (1.8) would become

zero

Page 13.
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But the coordinate of electrical center during this determination

must be calculated, moreover its position is changed with a change in

the synchronous phase. Since the allowances for the longitudinal

arrangement of drift tubes relate to the coordinates of electrical

centers, this definition, which formally simplifies the calculation

of corrections of second approximation/approach, in practice proves

to be inconvenient. To it is simpler select the electrical center of

period in the geometric center of the accelerating clearance and to

treat the second member of expression (1.8) as the supplementary

correction of the second approximation/approach. Both corrections

prove to be the values of one order. When the correction of the

second approximation/approach can be disregarded/neglected, the

geometric center of clearance coincides with the electrical center,

determined by equality (1.16). Analogous considerations occur, also,

during the selection of electrical centers in the accelerating

systems of other types. In Fig. 1.1 electrical centers are noted by

asterisks.

Let us rate/estimate the corrections of the second

approximation/approach. The current particle speed in the period of

the accelerating structure can be represented by the series/row

p(z) =0(zo) + d§(zo)(z-zo) W d~ ). 17
ani

Rate of change in the longitudinal component of



DOC = 82105201 PAGE

impulse/momentum/pulse is determined by the expression

dn =eE; z)co, u, 1

Since

where Y= ! - orenz's factor,

&=moc- rest energy of particle. The higher derivatives are

calculated by differentiation of expression (2.19). With substitution

z=z0 one should consider that for synchronous particle ,. For

evaluating the corrections of the second approximation/approach let

us assume: L. cotisl with |z-z,l<g/2 and E,=-0 with Iz-z,|>g/2. This

approximation of field in the accelerating gap is occasionally

referred to as square wave. After substituting series/row (1.17) into

expression (1.8) and after producing integration, we will obtain

T=T\ 1- - XU , (1.20,

where T, is determined by formula (1.11) and does not require the

approximation of field by square wave.

Page 14.

Low parameter x is assigned by the expression

x= s)snq 5,' (1.21

where ,=p,(zo)- speed of synchronous particle in the electrical
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center

0-,C=pI I - Xa (1.22)

Va .e

is called the coefficient of clearance.

The length of the period of the accelerating structure, strictly

speaking, is determined by the equality

dz
k

After using series/row (1.17), we will obtain

t,,= L 'I-T - I ti.24)

The corrections of the second approximation/approach can be

disregarded/neglected, if parameter x is sufficiently low.

One of the most important parameters of linear accelerator is

specific acceleration Wx, equal to the relation of an energy gain of

synchronous particle at the length X to the rest energy. In the

fields of the standing waves

WX = T Cos ,(1.25)

in the field of the traveling wave

FCO = 4co F . (I.25a)
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Parameter X can be expressed through the specific acceleration

.- tgi,. " (1.21a)
2 2.)T 3 "

Usually T- 1. tg;, i I. Thus, the smallness of parameter "k is provided,

if specific acceleration is small in comparison with the

instantaneous value of the given particle speed. Specific

acceleration very is simply connected with a partial increase in the

impulse/momentum/pulse of synchronous particle in the period of the

acceleratinc structure. If partial increases in the

impulse/momentum/pulse and energy are small, then, as :t is easy to

show,

Aps AW,

MOlC 0.90

Substituting AW= , we obtain

_ .. kWl. (1.26)
fpv

Page 15.

Nonrelativistic approximation/approach formula (1.26) is reduced to

the form
-Ap, = kW;.. (1.27)
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The quantitative estimations, which base the possibility of the

deletion of the corrections of the second approximation/approach,

will be given in S1.4.

Given formulas (1.8), (1.10), (1.11), (1.14), ( .16) are

modified, if in field distribution Ez- :.i predominates odd

component. For the orientation let us give the approxima:ion formulas

for the factor of transit time and partial increase in energy in some

accelerating devices/equipment, represented in Fig. 1.1. Synchronous

phase everywhere is counted off from the moment of time with which

the standing wave reaches amplitude value.

1. Drift tubes (see Fig. l.1a),
! sin ia

T= " "a-- -MV. elW=eI',,Tcosq..

where I, - modified Bessel function of zero-order; d - diameter of

aperture opening/aperture in drift tube; V0 - amplitude value of

potential difference between drift tubes.

2. Cylindrical capacitor/condenser (see Fig. l.lb),

TM sirim sin --1: W.= -- 2eV,,Tsini4,. (1.291

where d - inner diameter of capacitor/condenser; a - coefficient of

clearance between capacitor/condenser and each grounded ring; L -
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distance between geometric centers of clearances; V, - amplitude

value of potential difference between capacitor/condenser and each of

grounded rings.

3. Retarding spiral with grounded middle (see Fig. i.lc).

To= W,, eE:Tos

4. Retarding spiral with grounded ends/leads (see Fig. 1.1d).

AX COS al "% ' ETsi 13

2

In formulas (1.30), (1.31) - axial length of spiral; E - amplitude

of the longitudinal component of field in the antinode.

Page 16.

In conclusion let us examine one of the possible procedures of

calculation of the periods of high-frequency structure for the

accelerator with drift tubes. For the calculation initial is the

dependence of the factor of transit time on the instantaneous value

of the given speed of the synchronous particle T-T(). This

dependence in the electrostatic approximation/approach is determined

by formula (1.15) and can be interpolated by the series/row of the
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discrete/digital values T with the appropriate smoothing of the

curve, passing through experimental points. Let ts, z.--

instantaneous values of the flight time and coordinate of synchronous

particle. Then

dz, - dt -,

where

""o -T =eEocos ,r(f ).

Since W=(m-mo)c' , that

3

During the calculation let us assign the parameter

.\= Cos (F" ( 1.32)

of those connected with the specific acceleration with the equality

W'; - -AT ( .(.

Then

dz, =-

dt - do' cA (I_-pS)3"2 T

Let us introduce the new dimensionless variables

, =-+ za; r,=--Et,.

In these variable/alternating
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where g3. - given speed of injection. By latte last integrals in the

parametric form is assigned dependence t, =frr.) which can be

constructed graphically (Fig. 1.2) or written n the form of table.

Let us divide the axis of abscissas into equa intervals .

Page 17.

To space Ar,=kA corresponds At, = k i.e. tim of flight between the

electrical centers of adjacent periods. The o linates of dividing

points determine the coordinates of the begin .ng of each n period of

the accelerating structure. The lengths of dr 't tubes are calculated

from the assigned dependence a(p), which ensu s the equality of the

natural frequencies of all periods of structu .

The periods of the accelerating structur and length of drift

tubes can be calculated also consecutively/se ially, utilizing

formulas (1.13), (1.11), (1.10). Since for ea a following period of

structure to us is known the inlet velocity 1. while into formulas

(1.11), (1.13) enters speed P. average/mean i the period then the

latter must be calculated either by the methc of successive

approximations or, is more rough, with the ai of the approximate

equality

2y.-
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S1.2. Phase stability of particles. Capture of particles into

acceleration mode.

The particles, injected into first type "inear resonance

accelerator, are seized into acceleration mode because of the process

of phase stability [19, 20]. The proce - of phase stability leads to

the fact that the particles, which satisfy the specified initial

conditions, stably are grouped in the area of the synchronous phase

of high-frequency field. The remaining particles, which do not fall

into the stable region about the synchronous phase, on the average do

not extract energy in high-frequency field and retire from the game.

Therefore beam decomposes lengthwise to the clusters, which follow

after each other with the frequency of accelerating field. The

elementary picture of phase stability it is easy to explain based on

the example of particle acceleration in the traveling wave. In this

case the region, occupied with the accelerated particles, is located

about the synchronous phase on a decrease in the crest of wave (Fig.

1.3a). Actually/really, let us examine the particles, which move

sufficiently closely to the synchronous. If any particle has a speed,

the lower speed of synchronous particle, then it will lag behind the

synchronous and it will hit the region of the traveling wave with the
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increased strength of field. This particle will undergo acceleration,

which exceeds travelling-wave acceleration; therefore its speed will

grow/rise relative to wave, until particle passes synchronous phase.
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Fig. 1.2.

Page 18.

Particle with the initial velocity of of higher than phase wave

velocity, will anticipate/lead synchronous particle and it will hit

the region of the traveling wave with the lowered/reduced strength of

field. The speed of this particle relative to phase wave velocity

will decrease, until particle falls behind the synchronous phase.

Thus, the particles, which fall into the accelerator in the

nonsynchronous phase of the traveling wave, but it is sufficiently

close to the synchronous phase, they prove to be in potential well

and complete longitudinal vibrations relative to synchronous phase.

In the average speed of nonsynchronous particles proves to be equal

monotonically growing phase wave velocity. Entire bunch of particles,

seized in the mode of acceleration in this period of high-frequency

field, will move with the speed, equal at each moment of the time of
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phase wave velocity. As it will be shown subsequently, the

spread/scope of phase oscillations decreases with an increase in the

energy of particles.

Similar pattern occurs upon the particle acceleration in the

field of standing waves. Stable synchronous phase falls to the period

of the increase of field in the accelerating clearance (Fig. 1.3b).

The particle, which moves behind the synchronous, will obtain in the

accelerating clearance a larger partial increase in energy, than

synchronous, while the particle, which moves in front of the

synchronous, is smaller. The phase of the standing wave with which

the given particle, seized into acceleration mode, passes the

electrical centers of the consecutive clearances, will oscillate

around the synchronous phase.

The longitudinal vibrations of particles in the traveling wave

are described by the differential equations whose solutions determine

region of capture of particles in acceleration mode, and also

frequency and damping of oscillations/vibrations. In the linear

accelerators with the standing waves the longitudinal vibrations,

strictly speaking, are described not by differential equations, but

by difference equations. But if a change in the phase of the

flight/span of electrical center and a partial increase in energy in

each period of the accelerating structure is sufficiently small, then



DOC 82105201 PAGE

finite increments can be replaced by differentials, which actually

reduces the goal to the particle acceleration in the equivalent

traveling wave. Quantitative estimations show that with usually

utilized in the linear ion accelerators middle fields this

replacement does not lead to the significant errors in calculations.
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Fig. 1.3. Key: (1). Traveling wave. (2). Standing wave in clearance.

Page 19.

For evaluating the permissible errors during the replacement of

difference equations of differential equations let us compare

solutions of both systems of equations. This comparison it suffices

to conduct for the simplest case, disregarding relativistic

relationships/ratios and damping of longitudinal vibrations. A

difference in solutions of both systems of equations is greatest with

the low energies of particles.

Let us examine for concreteness the accelerating system with

drift tubes (Fig. 1.4). Let ',. v,- speed of synchronous and
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nonsynchronous particles respectively within n drift tube; If, phase

of field, in which nonsynchronous particle flies the electrical

center of the accelerating clearance before n drift tube. Let us

designate

-.. -- :..,. l. 4
1 A)

For the particles, little which are deflected from the synchronous

particle, we have 1% '< I: g I- The raid of a phase difference in one

period of the accelerating structure is equal to

U, = *n-I - V"1 = 0) ( t -At .,)

where n. At,,- time of landing run of the nonsynchronous and

synchronous particles between the electrical centers of the n-th and

(n+l)-th clearances

Hence

A-n W t -2:tkg . (1-35)

On the other hand,

lgn = gn+i-gn = - i ___-__

Let us place ,v.,, this equivalently, as it is possible to show,

to failure of the examination of the process of damping the
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longitudinal vibrations

Repeating "inings/calculations of S1.i, for a partia. energy gain of

nonsynchronous particle we will obtain the expression, analogous to

formula (1.10):

AW Wg, -1 -E

Fig. 1.4.
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Page 20.

As was shown In s.:, the factor of transit time 7 in the first

approximation, does not depend on the phase of particle. With an

accuracy to equality - value T is identical for the synchronous

and ,ionsynchronous particles. In nonrelativistic

approximation/approach W,= mo whence

AIX m0,:,. A,-,; A V , mnot' A"n

and

Agn=.. - ,-I I - " tg %SV .,.fne ,'1 OS q~ / ,n

Substituting expression (1.27) into the latter/last equality and

introducing for the brevity a designation

n 2- : k2 (, (1,36)

we have

m5

Aga V. i -(1.37)

Equalities (1.35) and (1.37) are the equations of small longitudinal

vibrations in the first differences. Let us compose second difference

AW,-W,_,. Utilizing expressions (1.35), (1.37), we obtain the

following equation of longitudinal vibrations for

variable/alternating W.:

AV-Av_ _ (1.38)

Before solving equation we reduce it to a differential

equation, ruiacixh tile filite iiicretento )y differeatial.
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:n ei.ati-n ii.3, n - number of periods of the

accelerating structure, passed with particle from the beginning of

accelerator. Since An=l,

an2
n an n

Equation (1.38) reduces to the differential equation

an, m-' -= O.(1.39)

Let us examine the equation in finite differences (1.38). It it is

possible to rewrite in the form
W..,--,.- , - r r = 0.

Let us substitute in this equation the predicted solution in the form

,n =x". Value X proves to be the square root equatio

X2-(2-m2)%- I =0.

Assuming/setting
2 -- 2 cos4.

we obtain

;,=c os± Vcos'J- = e*A.

Page 21.

In the general case the solution of equation (1.38) takes the form

(arbitrary constants are omitted):

Depending on value ma the parameter m can be real or complex.
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Thus, the solution of difference equation differs from the

solution of differential equation in terms of the frequency

m =2sin

Frequencies of both solutions are approximately equal to (u~m) with

m<<l. In the course of time the solutions diverge; they remain close

ones to each other on a time interval which is the larger, the less

the parameter m. Hence it is apparent that the condition of replacing

the difference equation to the differential equation coincides with

the condition under which it is possible to disregard the corrections

of the second approximation/approach to a factor of transit time and

to length of the period of the structure: specific acceleration must

be little in comparison with the given particle speed. Let at the

length of linear accelerator be placed nmamc the periods of the

accelerating structure. Then toward the end of accelerator both

solutions are radiated on the phase to value After

decomposing m in the power series on w and after being restricted to

the first nonvanishing approximation/approach, we will obtain

AT _m
3

Let us examine a numerical example. In some proton linear

accelerators (I-100, CERN, Brookhaven, etc.) it is accepted W)=

-2.7.10-3. Assuming/setting cosq),=0.8; 0-0.2; k=], we have

A'2T = 10"n.." Hence it is apparent that even at very high values "nmalc,

on the order of hundred, difference in both solutions in the ion

accelerators can be disregarded/neglected. Virtually matter is still
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happier, since at fixed value W parameter m decreases with an

increase in the energy of particles. In the electron accelerators

specific acceleration usually proves to be very large in view of the

low value of rest energy of electrons. Therefore the replacement of

difference equations to the differential equations for the electrons

is virtually unacceptable.

Let us note that the solution of differential equation (1.39) is

always oscillator, if only T, <0. However, the solution of difference

equation at the high values of m can prove to be aperiodic.

Thus, the replacement of difference equations to the

differential equations is possible, if a number of periods of

high-frequency structure, which fall for one period of longitudinal

vibrations N-2r/u, much more than unity; in other words, if a phase

difference it little is changed in one period of structure.

Page 22.

Upon transfer from the finite increments to the derivatives we

replace the discrete/digital effect of the field of standing waves to

the particle by continuous effect. This continuous effect is reduced

to the particle acceleration in the equivalent traveling wave. The

sufficiently complete differential equations of longitudinal
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vibrations taking into account variable speed of synchronous particle

and relativistic relationships/ratios it is possible to obtain on an

example of equation (1.39), compiling an equation in the finite

differences and replacing further the final ones of increase by

derivatives. However, it is expedient to introduce into the

examination the equivalent traveling wave, which reduces to the same

differential equations, but by simpler and more graphic method. The

approximation of standing waves by the equivalent traveling wave is

valid under the same assumption about smallness W . as transition

from the difference equations to the differential equations.

A change of the energy of arbitrary particle at any point of

field is determined by the equation

dW--- e ,ztaz 4 )

In expression (1.41) is omitted the dependence of the longitudinal

component of field on the transverse coordinates. Here and

subsequently the longitudinal vibrations of particles will be

examined under the simplifying assumption that the amplitude of the

longitudinal component of field is constant in entire section of

aperture. This proposition it is made sufficiently well, if a radius

of aperture is small in comparison with value pX, since the

dependence of longitudinal :omponent on ratio r/AX in the systems

with the axial symmetry is assigned by the modified Bessel function

of zero-order, that has very flat extremum in zero. Function E,(z. t)
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is assigned by equality (1.4). Amplitude distribution of the

longitudinal component of standing wave can be represented in this

period of structure by Fourier series. As it was shown above, with an

accuracy to the corrections of the second approximation/approach, in

distribution Eg(z) it suffices to consider in the dependence on the

construction/design of the accelerating element/cell only even or odd

part. We will be restricted to the case when function , is

approximated by its even part (relative to the electrical center of

period)

2.ME. (z)=- A. os :

The instantaneous value/significance of the longitudinal component of

field takes the form

E.(z, t)= ' Bn c t- (1.42)
_'1 ---- ( .

where B,-A,; Bm= 1 4An with m 0.

Page 23.

Series/row (1.42) represents the sum of the running harmonics, which

are spread in the positive (m>0) and negative (m<0) directions.

Substituting series/row (1.42) into expression (1.5) and

assuming/setting in the first approximation, wt(z)=(wz/v)+o, for a

partial increase in energy of arbitrary particle in the period we
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obtain the expression

r 2.,
AW=e N' B,,, Co rn

Since

\coS L-' (k - m) z - q 1 dz ILcosf n Ii M kL 0 Aripzmk

Key: (1). with.

then

\W = eBhL cos ¢.
Thus, in the first approximation, the contribution in the

acceleration gives only the one running harmonic of series/row

(1.42), which corresponds m=k and spreading in the direction of

particle motion. We will be restricted in series/row (1.42) to

harmonic m=k and will consider that the speed of synchronous

particle, which is determining value L, is variable/alternating along

the axis of accelerator. We will obtain

Ez (z, t) = B cos wD$t L
0

Further, according to expression (1.14) Bk=; Ak=ET. As a result we

obtain the following expression for the equivalent traveling wave

E,(z. t)=EoTcos o"t- -S (1.43)
0

Let us form an equation of the longitudinal vibrations ofF
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particles in the traveling wave. For the arbitrary particle

- -=eEcosqx, 1 44,

where o - instantaneous phase of traveling wave at the point in which

is located the particle at moment/torque t,

:45

where E - amplitude of the traveling wave.

Page 24.

In the field of standing waves E=ET. For the synchronous particle

dw, =eE cs,. (1.46)

Let us select as the dynamic variable/alternating a phase difference

of the nonsynchronous and synchronous particles

V - - , (1.47)

and a reciprocal difference in their energies

p, W,-W. (1.48)

Further calculations let us conduct in the approximation/approach,

with which it is unimportant, are taken these differences at one

point of space, or in a moment of time. Deducting equation (1.44)

from equation (1.46) and converting/transferring from the

differentiation with respect to the coordinate to the differentiation

with respect to time, we obtain
dp*- eEU' (Cos 4, -Cos (V + q,). (1.49)



DOC = 82105202 PAGE

We differentiate equality (1.45):

v-V,8- = -(1.45a)

From the general/common/total relativistic relationships/ratios
it

p--- ' Jv. -- i.foliowsap

AV_ I ip

or

-- -- -(1.50)Vj y
2  

PuJ'" Pa Pat'. .0

Hence df
* -i--,= p,. (1.51)

Equations (1.49), (1.51) are the system of two.first-order equations,

which describes the longitudinal vibrations of particles in the

equivalent traveling wave. These equations can be written in the form

t= ' ,H o¢ ' (1.52)

where

H(*, p,, t)= 2 , p2-,-eEv, sin(i+ ,)- Vcosq,;. (1.53)

Page 25.

As is known, the equations of motion, written in the form (1.52), are

called canonical, and the variable/alternating, in which is possible

this form of writing of equations of motion -

canonical-conjugated/combined. Function H from

canonical-conjugated/combined variable/alternating and time -

Hamiltonian of particle. Thus, variable/alternating p, is the

generalized momentum, canonical-conjugated/combined with the
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generalized coordinate of motion V The special importance of the

examination of motion in canonical-conjugated/combined

variable/alternating is connected with existence two fundamental of

the theorems of mechanics. It is expedient to briefly resemble

content and value/significance of these theorems. It is in detail to

the Hamiltonian mechanics it is possible to be introduced, for

example, according to book [21].

During the analysis of motion of particles it is convenient to

utilize a concept of phase space. Let the particle have n degrees of

freedom. In the general case of motion in the three-dimensional space

a number of degrees of freedom is equal to three. The state of

particle at any moment of time is determined by the values 2n of the

variable/alternating from which n of variable/alternating determine

the position of particle in the space (generalized coordinates

.. q). and other n variables characterize the speed of motion by

each degree of freedom (generalized momenta Pt .... ps). At each moment

of the time of the state of the given particle it is possible to

determine by the position of the representative point in 2

n-dimensional coordinate systems. Along the axes of coordinate system

plot/deposit the values of generalized coordinates and particle

momenta at the given instant. This 2n-dimensional coordinate system

is called phase space. To a change of the state of particle in the

time in accordance with the equations of motion corresponds the
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displacement of the representative point in the phase space. The path

of the representative point is called phase particle trajectory (see

[22-24]). To periodic processes correspond locked phase trajectories.

Most clearly appears phase space for the single degree-of-freedom

particle, i.e., for the particle motion by which is described by two

differential first-order equations. In this case phase space

degenerates into the phase plane. As it is easy to show, to harmonic

motion corresponds phase-plane ellipse. If we have a beam of

particles, then the representative points of beam can fill in the

phase space certain different from zero volumes, called the phase

volume of beam. The presence of the final phase volume of beam is a

consequence of the statistical scattering of initial conditions,

connected usually with the disordered thermal particle motion. A

number of representative points in the unit of phase volume is called

phase particle density. Let in the element/cell of the phase volume

dV=dql .... dqdp. ..... dp

be located dN the representative points; phase particle density is

equal to
d.V

qn, P1., p, t)= dV.

Page 26.

If particle motion is described by system of 2n the first-order

equations, then in the general case there is 2n-1 constants of

motion. The interval of motion is the function of dynamic
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variable/alternating and time, that remains constant with the

particle motion in accordance with the assigned equations, in other

words, in the remaining constant value in this phase trajectory.

The first of the theorems mentioned above asserts that the

Hamiltonian, which does not depend clearly on the time, is constant

of motion: dH OH
d t dt "

The Hamiltonian of particle - this is total energy of motion (kinetic

plus potential), expressed through canonical-conjugated/combined

variable/alternating. Therefore this theorem essentially expresses

the law of conservation of energy in the isolated/insulated system.

The dynamic system whose Hamiltonian does not depend clearly on time,

is called conservative.

The second theorem (Liouville's theorem): the phase volume of

the collective of the particles, which move in accordance with the

equations of motion, in the space of canonical-conjugated/combined

variable/alternating it is invariant value. The phase volume of beam

can be deformed, but by any force fields cannot glow to zero phase

volume of finite quantity. It is important to note that in the case

when the vector potential of electromagnetic field is equal to zero

at all points of configuration space, the Cartesian coordinates x, y,

z and impulses/momenta/pulses P. = fl_,Py = my, p. = mz
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canonical-conjugated/combined. As the corollary of Liouville, any

decrease of the scatter of particles on the coordinates (compression

of beam) is accompanied by an increase in the scatter in the

impulses/momenta/pulses, and vice versa, the expansion of beam causes

the decrease of the scatter of particles on the

impulses/momenta/pulses.

Let us examine certain limited phase volume around the

representative point, which moves along the phase trajectory. Initial

:onditions uniquely determine phase trajectory, so that the phase

trajectories of different particles at the regular points of phase

space do not intersect. Hence it follows that not one representative

point can cross the boundary of the chosen phase volume. A number of

representative points in the element/cell of phase volume is kept

constant. From Liouville's theorem it follows that the phase particle

density in the space of canonical-conjugated/combined

variable/alternating is constant along the phase trajectory.

Canonical-conjugated/combined variable/alternating it is

possible to introduce only for the dynamic systems, in which are

absent dispersive forces. Therefore Liouville's theorem is valid only

in the absence of dispersive forces. In the general case dispersive

forces are called the forces, which depend on the projection of

particle speed on line of force [77]. These forces appear, in
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particular, in the presence of friction, energy losses to the

radiation/emission or during the collisions of particles.

Page 27.

Dispersive forces are absent in the potential fields where the force

not at all depends on speed. The Lorentz force, velocity-dependent of

particles, also is not dispersive, since the direction of the action

of this force is perpendicular to speed. In the linear accelerators

usually it is possible to disregard all sources of dispersive forces.

Let us return to the equations of longitudinal vibrations. The

Hamiltonian of particle (1.53) depends clearly on time, since

parameters p-, ., are the assigned functions of time. However, let us

assume that parameters Ps, vs are changed sufficiently slowly, so that

for the time of a substantial change in variable/alternating . p.

these parameters remain almost constant. This change in the

parameters is called adiabatic. With an adiabatic change in the

parameters is changed the type of phase trajectories, but it is

possible to show [21] that the area, included on the plane by the

locked phase trajectory, in this case is not changed. The values,

which remain constants with an adiabatic change in the parameters,

are called adiabatic invariants. The area, included by the locked

phase trajectory, is one of the adiabatic invariants. The invariance

7:
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of area - this is one of the corollaries of Liouville, since the

locked trajectory can be represented as the boundary of the phase

volume of certain collective of single degree-of-freedom particles.

A question about the capture of particles into acceleration mode

can be examined in conservative approximation/approach [25].

Subsequently let us show that the explicit dependence of Hamiltonian

on the time leads to damping of longitudinal vibrations. Therefore

calculation of capture in the conservative approximation/approach

knowingly gives supply according to a number of seized particles.

Second term of Hamiltonian (1.53)

is the analog of potential energy. In the conservative

approximation/approach the Hamiltonian is integral of motion;

therefore equation (1.53) is the equation of phase trajectory. To

each phase trajectory corresponds the specific value/significance H:

N H--V (V). (1.5)

Expression (1.55) gives the simple method of the construction of the

family of phase trajectories (23, 24]. Let us construct on plane

V.v potential function ,V(V) (Fig. 1.5). The relief of potential

function is determined by the sum of sinusoid sin(- - (p), of out of

phase relative to zero, and straight line -V cos,.. Let us conduct

on plane V. V horizontal line V-H. Actual values PT occur only when

V(V)<H and for each value/significance V they are determined by
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root of the current difference H-V.

Page 28.

To value/significance H,, at which horizontal line V=H, concerns

potential function at the point of the minimum, corresponds the

isolated/insulated singular point on plane 4.P,. This singular point

is called center. In the nearest vicinity of center phase

tra3ectories are locked. The direction of the motion of the

representative points (see Fig. 1.5) is obtained from the condition:

"V>0 when p,>O (1.51'. 4th increase in H the framework of the

locked phase trajectories grows/rises. Let when H = H, the horizontal

line concern curve V'tl at the point of maximum. To this

value/significance of Hamiltonian corresponds the special phase

trajectory, which has the point of self-intersection on the axis of

abscissas. The coordinate of the point of self-intersection is an

abscissa of maximum V(*); the indicated point is also the singular

point of equations of motion (saddle). The phase trajectory, passing

through the saddle, is called separatrix. Separatrix divides two

regions of phase plane with different character of phase

trajectories. Within the separatrix phase trajectories are locked,

out of the separatrix extended.
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Page 29.

Let us note that as a whole the family of phase trajectories on plane
5-p, corresponds to the possible motions of the ball/sphere, which

wheels without friction along the relief, assigned by potential

I '

'Vfunction. Center V =0,= corresponds to the synchronous

particle: r = ,=¢ onst. W = W.,(z). Phase and energy of the particles,

which caught upon the injection inside the separatrix, complete

oscillations/vibrations around the synchronous phase and the current
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energy of synchronous particle. These particles are accelerated.

Energy of the particles, which proved to be out of the separatrix,

decreases relatively W,(z. It is obvious that such particles are not

seized into acceleration mode. Thus in the conservative

approximation/approach separatrix limits the capture region of

particles into acceleration mode. Thus in the conservative

approximation/approach separatrix limits the capture region of

particles into acceleration mode.

The coordinates of the extrema of potential function are

determined by the condition

-=eE,.icos(W - .)-cosf,.)i=0.

Equation (1.56) in the period in question has two roots: q- = and

,'e=-2f,. The second derivative at the points of extrema is equal to
d2V dIVa- (0)= - eE ,,sin 4,: -T : (2 2q = eE ,,,sin (,.

The chosen value/significance of synchronous phase is stable, if the

second derivative in zero is positive. To this corresponds condition

sinip,<O. Then the second state of equilibrium ic =-24, (or 1=-F.) is

unstably and saddle.

According to expression (1.55), the separatrix is described by

the equation

P*= ±Y - V(-2(,)-i -00 (1.57)

In the practical calculations of basic interest is a relative
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difference in the impulses/momenta/pulses

g= I.

Utilizing relationship/ratio (1.50) and expression (1.54), we obtain

the equation of separatrix in coordinates 'p. g:

g . ( V ) = ' p , (r-- i n V " -2 ( , ) c o s T , - -( I - c o s s i l l =

(1.59;

Page 30.

The semirange of separatrix along the axis g is equal to
!E2y ,' I (f, Cos (f., - -in (f'. (1.60)

Coordinate V,; of the second point of intersection of separatrix with
the axis of abscissas let us find from the equation

Substituting into this equation expression (1.54) and expanding

trigonometric functions from f,,V in the power series, we obtain

S(1.61)

With an accuracy sufficient for practical purposes it is possible to

accept 1,--q,. Fig. 1.6 gives separatrix in coordinates V. g.

With expressions (1.59), (1.60) more conveniently to operate,

after introducing in them the value of specific acceleration W';.

Substituting expression (1.25a) into equalities (1.59), (1.60), we

have
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SI -cos - (- sin i - 2(p.) ctg,.;

(1.59a)

2 y 1 tg , - (.60a)

where

V' =- 2t (1.62)

Let us tentatively rate/estimate value . Let

S=.7 10-3; CS, :0, .03(it corresponds to energy of injection

W.=700 keY). Then -,U =.094 and g,,.c=7.3%.

If upon the injection it is possihie to completely fill capture

region (see Fig. 1.6), then clusters subsequent y do not fluctuate;

the longitudinal length of clusters monotonically increases according

to the law
=3, q,. -

But if into the accelerator is injected monochromatic beam with the

scatter of impulses/momenta/pulses, substantially smaller than the

spread/scope of separatrix (Fig. 1.7), then clusters upon the

acceleration fluctuate along the length: the region, occupied.with

the representative points of beam, rotates within the separatrix with

the frequency of longitudinal vibrations. The equations of

longitudinal vibrations are nonlinear. Therefore frequency depends on

the amplitude: with an increase in the amplitude the frequency of

longitudinal vibrations decreases.
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Fig. 1.6.

Page 31.

This causes the distortion of phase volume, schematically shown in

Fig. 1.7.

The calculation of capture region taking into account the

explicit dependence of Hamiltonian on the time can be carried out

numerically (26]. The qualitative picture of the distribution of

phase trajectories for this case is shown in Fig. 1.8. As already

mentioned, when -=0 the phase oscillations attenuate. Therefore the
't

family of phase trajectories in Fig. 1.8 corresponds to the possible

motions of the ball/sphere, which wheels along the potential relief,

but in the presence of friction. Capture region in Fig. 1.8 is

shaded. It proves to be open-circuited. Calculation shows that in the

virtually acceptable initial parameters of ionic accelerator

1c01I the capture region on the phases at the level g=0 proves

to be approximately/exemplarily to 10o/o wider than the region,
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designed in the conservative approximation/approach. The maximum

width of capture region on the phases occurs with Ag=+2-4o/o and is

approximately/exemplarily to 20-30o/o more than 3 These

differences in the conservative and dissipative

approximations/approaches can have certain value/significance upon

the injection of monochromatic beam.

For evaluating the accuracy of differential equations Fig. 1.9

gives the separatrix of difference equation.
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Fig. 1.7.

Fig. 1.8. Fig. 1.9.

Page 32.

Separatrix is obtained from the difference equations of numerical

calculation in the conservative approximation/approach when

cos9,=0,8; Q(/=0.094. Phase V-- in the clearance, which follows

after drift tube where is measured value/significance g. In Fig. 1.9

where the comparison dotted line showed the separatrix, obtained from

the differential equations at the same values of the parameters.

Difference in both separatrices is virtually unessential.
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Let us examine the now limiting case of particle acceleration in

the traveling wave with the phase speed, equal to the speed of light.

In this wave synchronous particle is absent, since for any material

particle with a finite mass of rest of v<c. Rate of change in the

impulse/momentum/pulse of any particle is equal to

dD =eE cos .

where o - instantaneous phase of wave at the point in which is

located the particle at the moment of time t

(1.63)

Let us introduce for the simplification the given particle momentum

PV = p

and the specific particle acceleration in the antinode of the

traveling wave, determined by the equality

W; = eE% (1.64)

This value differs from Wx upon the acceleration in the wave where

vo<c [see equation (1.25)]. Differentiating expression (1.63) and

taking into account that
_1.= P9

we obtain the following equations of motion of particle in the field

of the traveling wave with a phase speed of v$=c:

=p - W '%Cos of. (1.65)

Hence (1.65)
CW ) 9 (1.66)P9 V, +P4
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Page 33.

Integrating expression (1.66), we obtain the family of the phase

trajectories

Sp ---P,=C-Wxsin,

where C - arbitrary integration constant. The equation of the family

of phase trajectories is convenient to represent in the parametric

form, after introducing auxiliary variable/alternating

_(Po) = l- q

positive at all actual values of impulse/momentum/pulse. Then

= C-W;sinq.

The dependence of the parameter Z on the phase o is given in Fig.

1.10. For curves 1, 2 (see Fig. 1.10) C>W": for curved 3 C=w: for

curved 4, 5 C<W . It is easy to see that to passage to the limit

P-c it corresponds J0. Consequently, into acceleration mode are

seized particles with the initial conditions under which C<W).. When

c>w, the particle momentum always remains finite -uantity. The

boundary of the region of capture corresponds C=W, or t=W (I-sinT).

Phase trajectories on plane f.1, are given in Fig. 1.11. The

direction of the motion of the representative points is selected from

condition !> 0 with cosv>O, according to equation (1.65). The
dt
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boundary of the region of capture is isolated with heavy line. The

maximum values of impulses/momenta/pulses for the particles, not

seized into acceleration mode, fall to the points o=r/2+-2rn. The

impulses/momenta/pulses of these particles periodically are changed

about the constant value, and particles monotonically lag on the

phase behind the traveling wave, converting/transferring from one

period to another.
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Fig. 1.10.

Page 34.

The phase trajectories, which lie higher than boundary curve,

correspond to the particles, seized into acceleration mode. In the

course of time the speed of the seized particles always begins to

grow/rise. Each particle is seized by the specific period of the

traveling wave; particle remains from the wave, but its phase,

according to expression (1.67), it asimptotically tends for the

value/significance

C
= Arc sin

Phase oscillations when vb=c are absent. The minimum

value/significance of impulse/momentum/pulse for the particles, which

initially caught into the negative half-period of wave, falls to the

point o=-r/2. The clusters of the accelerated particles are collected

in each period of the traveling wave in the region from Q=-v/2 to
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Qp=0. The boundary of the region of capture is described by the

equation

A = ,W.i ,nf ' .168

The value,'sianificance of the given impulse/momentu.m/pulse minimally.

Permissible For the capture is equal

Let the amplitude of the traveling wave be equal to 30 kV/cm and

X=10 cm. Then the value of specific acceleration for the electrons

proves to be equal to W'% 0,1I, and for protons 5. 16-5.
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Fig. 1.11.

Page 35.

Hence it is apparent that the electrons are seized by the traveling

wave, which has phase speed :: c. already with energies on the order

of 1 MeV, and protons - only with the energies, which exceed 101 GeV.

Thus, in the traveling wave with a phase speed of c virtually it

is possible to accelerate only electron beams.

Sl.3. Small longitudinal vibrations.

Particles, close ones upon the injection to the synchronous

ones, vary on the phase with a small spread/scope, their behavior can

be described by the linearized equations. The investigation of the

linearized equations makes it possible sufficient simply to calculate
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fading and phase change of longitudinal vibrations at the length of

accelerator, which is important from the point of view of the

estimation of energy spectrum of the accelerated particles. The

estimation of certain allowances for the production of the

accelerating system also is reduced to the analysis of solutions in

the linear approximation/approach.

Let V i Decomposing/expanding the right side of equation

(1.49) in the series/row according to degrees V and being limited to

linear term, we have

-=eE:, sin (,w.

According to expressions (1.25), (1.62),

-eEsinq,= .').* (I 7n)

As a result we obtain the following system of equations of

first-order, which describes the small oscillations

dt y \ ,
dP*

System (1.71) is reduced to one equation of the second order

y+ (lnylpv,.) y-3 Q1 =0. (1.72)

The coefficient of equation (1.72) they depend on the current energy

of synchronous particle and, according to the condition, they are the

"slow" functions of time. Let us switch over to the dimensionless

independent variable, which will make it possible to conduct a

comparative evaluation of coefficients. Let us assume r=-t. Then
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where

_ Vj ( T)p~ I 7:

dw ...

Page 36.

Let us note that when W',=const

2(' 11,:,- 2  ig 1.76)

Actually/really, from relationship/ratio (1.26) with an accuracy to

the replacement of finite increments by derivatives we have

I doo,
mrnc dlt 2

Hence

W2 , f 1.77)

or, taking into account expression (1.62),
I I , eh"

Substituting latter/last expression into equality (1.74), (1.75), we

obtain equalities (1.76). Functions 6(T), v2() are hyperbolas; they

are slow functions r with r>>l. Thus, the smallness of relation FI
Ps

guarantees the slowness of the coefficients of equation (1.73).

Let us represent the solution of equation (1.73) in the form

() 1 () sin W(r). (1.78)

Let us now substitute solution (1.78) in equation (1.73) and will
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gather coefficients when sinT and cos'V:

6 -@ L .. . =0:

2 26dT( [ v!- W/i=0.d2 d , JDe 6 d241 (1.79)
2 j-T -r --D b -2 0 .

Due to the "slowness" of the coefficients of equation (1.73) we have

e-6 -1. Since 5-1r , then -'Z6 j-! Disregarding in first
-2l j7'I

equation (1.79) the members of order 1/r' in comparison with T.

we obtain

dT aW =" ().( 1.80)

Finally, disregarding in the second equation term '1'--- in

comparison with terms 6W, 'Y.-- 3 !,, we obtain the equation

I d - - I dv" a = 2 (r---]"aq "( 1.81 )

Page 37.

From equalities (1.75), (1.80) it follows

a, 3

Thus, value

Q = y- Q(1.82)

is an instantaneous value/significance of the frequency of small

longitudinal vibrations. Parameter Qe, determined by expression

(1.62), is nonrelativistic approximation/approach to frequency of

small longitudinal vibrations. Phase change of oscillations at the

length of accelerator is equal to
9

'i (t Q (t) dt. ( .3
to)
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Fading the amplitude of phase oscillations for different

functions Wx(z) can be obtained by the integration of equation

(1.81). However, to more simply determine fading, on the basis of the

adiabatic invariant. Let us limit ourselves in potential function

(1.54) to the first nonvanishing approximation/approach of w
V(*)=-eEvosin p -1 1.84)

Substituting expression (1.84) in the equation of phase trajectory

(1.55) and taking into account equality (1.70), we obtain the phase

trajectory of small longitudinal vibrations in the form

moreover

U)

Phase trajectory (1.85)is ellipse, which will agree with the harmonic

character of solution (1.78). The area, included by this ellipse,

la I=iOP,,

is constant in accordance with the theorem about the adiabatic

invariant. Hence

0 Const

P,-const V .

Page 38.

The amplitude of the oscillations of a relative difference in the

impulses/momenta/pulses
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ga \ ps .ac'

according t. expression (1.50), is eaual to
Ps (1.87)

and it is changed with an increase in the energy of particles

according to the law

g, = const (1.88)

First let us examine damping small oscillations in the general

relativistic case upon the uniform acceleration along axis

(W.=const). According to expressions (1.62), (1.82), the instantaneous

values of frequencies decrease with an increase in the energy as

follows Q '

Y p. I Y; pT (1.89)

Since , that
D p-3' Pt p3'  g.- YPi ' '  (1.90)

The amplitude of small oscillations of particles along longitudinal

axis z-z. *L± and absolute difference in impulses/momenta/pulses

p-p. are proportional to values

z-z -. " p-p -YP'. (1.91)

From relationships/ratios (1.90), (1.91) it is evident that the phase

volume of the particles, which accomplish small oscillations, in

coordinates V, p, and z-z,, p-p. is retained. These pairs of dynamic

variable/alternating are canonical-conjugated/combined. Coordinates

', g are not canonical-conjugated/combined; phase volume on plane
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*, g with an increase in the impulse/momentum/pulse is decreased,

moreover they decrease both the spread/scope of phase oscillations

and the range of oscillations of a relative difference in the

impulses/momenta/pulses.

Let us note that the current spread/scope of separatrix (l.60a)

decreases according to the law

gxaxc - ,p-1,!. (1.92)

Thus, the amplitude of the oscillations of a relative difference in

the impulses/momenta/pulses falls more rapidly than the spread/scope

of separatrix.

For evaluating the course g,. and p-p, with the high energies of

formula (1.90), (1.91) it is convenient to represent in the form

ga -' - 4 -5, 4; P --P, y3 -1,4. .3

A relative difference in the impulses/momenta/pulses decreases up to

A=l. But absolute difference at the high speeds is begun to

grow/rise; the minimum is necessary at the value/significance 72=4/3.

Page 39.

In the nonrelativistic approximation/approach formulas

(1.89)-(1.91) are reduced to the form;

W W7"; g.-(1.94)

W-Z V u I iI
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(W,- kinetic energy of synchronous particle).

The course of the oscillations of phase depending on current

time I-I W', is given in Fig. 1.12. Damping longitudinal vibrations

is very considerable. Thus, under the ideal conditions upon the

particle acceleration from the energy of injection W.=700 keY to the

final energy W=24 MeV the amplitude of phase oscillations decreases

almost 4 times, and the amplitude of the oscillations of a relative

difference in the impulses/momenta/pulses - 9 times. In this case the

spread/scope of separatrix along vertical axis (ga,.c) decreases from

the beginning toward the end of the accelerator 2.4 times.

Are of practical interest the cases when acceleration along the

axis of accelerator is variable [27]:
dW 4 'dW1  U>, "'W-- -= --- -' \'W (1.95

Index 0 relates to the initial values of values. A similar

accelerating system can be specially designed for assigned m, and to

it will correspond the equivalent traveling wave with the

monotonically changing acceleration of the wave front and the

respectively changing amplitude, which ensures the

retention/preservation/maintaining synchronous phase. Let us note

that the accelerator with drift tubes, designed for the constant
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value of middle field, has acceleration variable along the axis, if

the factor of transit time is changed along the axis (see expression

(1.33)1.
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Fig. 1.12.
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Page 40.

With the cophasal supply of accelerating gaps, according to

expression (1.95), we have

But if accelerating gaps are supplied noncophasally, for example, all

periods of structure have constant length L=kp0 ,0 = const. then

. Wo/2 and W.1 -3'. Let us examine the case X=const in the

nonrelativistic approximation/approach. Since

then
3+2m -5-Ztn

-- -- ' ',  ga W, 8 (1.96)

In comparison with case of m=O the phase oscillations with m<0

attenuate more weakly, and.the oscillations of a relative difference

in the impulses/momenta/pulses are more rapid. The oscillations of

phase are stable, thus far m>-3/2. Therefore a maximally attainable

fading of the scatter of impulses/momenta/pulses g, .W;, With m>0

oscillation of phase they attenuate more rapidly, but more slowly
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attenuate the oscillations of impulses/momenta/pulses.

Upon the injection of monochromatic beam the scatter of

particles on the impulses/momenta/pulses at the output of accelerator

proves to be minimum, if at the length of accelerator is placed the

integer of half-waves of the longitudinal vibrations (see Fig. 1.7).

Therefore the calculation of the phase change of longitudinal

vibrations q, and the explanation of its dependence on the basic

parameters of accelerator for the establishment of the corresponding

allowances is essential. Let us examine, first of all, the most

important case when the acceleration of synchronous particle along

the axis is constant. Phase change of longitudinal vibrations is

determined by integral (1.83). According to expressions (1.62),

(1.82),

Q= 2a

where 7 - Lorenz's factor for the synchronous particle. Further,

differentiating equality (1.77), we obtain

2, y dy

In expression (1.83) let us replace the variable/alternating of

integration. Then

_QQ

________
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Let us introduce for the convenience phase q, calculated off the

conditional moment of time, which corresponds 7=1,

q, X\ ( 12- 3 )- dy. 1.97)

where

X 21 tg%,

W A

will eat phase factor for the longitudinal vibrations. Phase change

at the length of accelerator with the initial value of Lorenz's

factor 7=7. and finite value y=y, is equal to

By the second replacement of the variable/alternating

x4 =yl- I

integral (1.97) is led to tabular function [281

, ."L =xF ,- , (1.99:.

Ig i2 42-1

where F(o, k) - the incomplete elliptical integral of the ist kind:

F ) da
F~q k) I l--Iks sin= a

0

The tables of function F(0, k) are given, for example, in book [29].
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In the nonrelativistic approximation/apprcach <<l and F(o,

k)-w. Hence

AT x q -p,,.

For the variable/alternating o we have

Thus, with the nonrelativistic ones the energy

'4 = / 14 t"1 ,

Expression (1.100) can be also represented in the form

Let us note that the instantaneous frequency of phase oscillations

(1.62), (1.82) is proportional to square root of specific

acceleration, while phase factor (1.98) is inversely proportional to

this root.

Page 42.

Therefore with an increase in the specific acceleration the frequency

of longitudinal vibrations increases, and phase change between the
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given values nf initial and final energies decreases. This at first

glance strange fact is connected with the fact that with the growth

of sDecific acceleration decreases time of landing run of the

particle between the assigned energies, so that in spite of an

increase in the frequency phase change decreases.

Case of m,0 (1.95) let us examine only with low energies.

Calculation, analogous to that given, taking into account the

relationships/ratios

2.T00 i"0 : , , -
gi-ves

'15 4 * 1 4 '

where xo- the initial value of phase factor (1.98). With m=0 formula

(1.101) is reduced to expression (1.100).

For the orientation in the possible values of phase change of

longitudinal oscillations at the length of linear accelerator let us

determine AT with the energy of injection 700 key and exit energy of

the particles of 24 MeV. Let W = 2,7. 10-3; Cos = 0,8. Then x 42; formula

(l.100a) gives for AT the value/significance of 23.6 or 3.75

oscillations at the length of accelerator. Basic phase change occurs

with the low energies. With further increase in the exit energy phase
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change increases slowly.

Formulas (1.99) or with low energies (1.100), (1.101) allow at

:he given values of energy of injection and final energy of par ies

to select phase factor x by such so that at the length of

accelerator would lie/fall/lay the integer of half-oscillations. The

obtained value/significance of phase factor makes it possible to

refine the value of synchronous phase and, therefore, middle field.

By differentiation of expressions (1.99), (1.100) it is possible to

obtain allowance for the value of middle field with assigned standard

deviation AT from computed value.

With an increase of the amplitude the frequency of longitudinal

vi_:ations in the general nonlinear case decreases. For the

nonrelativistic speeds it is possible to obtain the following first

nonlinear approximation/approach to phase change of longitudinal

vibrations (W, = consti:

AT =AT., I xD,' f, 1(1.102)

where A*.- phase change of small oscillations, determined by formula

(l.100a) Do- the initial amplitude of phase oscillations. It is

interesting to note that with an increase in the energy of particles

"nonlinear" component of phase change approaches a constant value.
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This is connected with the fact that the amplitude of longitudinal

vibrations adiabatically attenuates, so that instantaneous frequency

asimptotically tends for the frequency of small oscillations. For an

approximate estimate let us examine the particle, initially close to

the separatrix: 1Z, =pi Under the conditions of preceding/previous

example Icosx 0 -X 42. p,, =0.0386) we will obtain that the

nonlinear correction to phase change does not exceed 0.2 rad. This

value is sufficiently low.

SI.4. Longitudinal vibrations in the imperfect accelerating system.

The damage of the regular structure of the accelerating system

and different instabilities of amplitude and phase of electric field

bring the fluctuations of phases and particle momenta. These

disturbances/perturbations can be relatively greater as, for example,

the idle gaps/intervals between the resonators or an abrupt change in

the specific acceleration upon transfer of one resonator to another.

Any real accelerating system, even which does not contain the large

interruptions/discontinuities of regularity (which are most

frequently caused by design considerations and are considered during

the calculation), it has relatively small errors, distributed in each

period of structure according to the random law. Small errors exert a
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substantial influence on the characteristics of the accelerated beam

in view of the recurrence of effect on the particles. In the

accelerating system with drift tubes the basic sources of small

random disturbances are the random errors of location of centers of

the accelerating clearances along the longitudinal axis of

accelerator and the nonuniformity of middle accelerating field,

connected both with the random disturbances/breakdowns of geometry

and with those instabilities of accelerating field in the time, which

are compared in the duration with the time of flight of the particles

through the accelerator. The external resonances of longitudinal

vibrations in the linear accelerators usually prove to be

unessential, since at the length of accelerator is placed a small

number of oscillations, and frequency in this case comparatively

rapidly is changed. In the accelerating systems there are systematic

errors, caused by a difference in the real parameters of system from

the calculated ones, for example, by an inaccuracy in the

installation of the given value of accelerating field or by the

instability of field from one impulse/momentum/pulse to the next. All

errors of the accelerating system must satisfy the very close

tolerances, which make it possible to avoid the exaggerated loss of

the intensity of beam upon the acceleration and to obtain the

sufficiently narrow spectrum of the distribution of the accelerated

particles according to the output energy of linear accelerator. In

the adjustable allowances is always important only first significant
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digit; therefore the calculation of allowances usually can be carried

out with essential simplification of the problem.

Page 44.

Let us examine methodlogy of the calculation of allowances for

different perturbation sources. Let us assume that the accelerating

system is the sequence of drift tubes loading a volumetric resonator.

a. Random errors in the accelerating system.

Let us examine the random disturbances of small longitudinal

vibrations in the nonrelativistic approximation/approach. The

amplitudes of the oscillations of phase and relative difference in

the impulses/momenta/pulses in this approximation/approach are

connected, according to expression (1.87), relationship/ratio

g' (1.103)

The equation of phase trajectory on plane w,g takes the form

g,=e'+(- V , (..104)

In the presence of the random errors in the accelerating system of

synchronous particle, generally speaking, there does not exist. Let

us examine the longitudinal vibrations of particles relative to
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synchronous particle in the appropriate ideal system. Let in certain

period of the accelerating structure the center of clearance be

displaced to value 6z relative to regular position. Then particle

passes center in the phase of field, which delays relative to correct

phase to value

6Z = 6Z

Further, a regular increase in the impulse/momentum/pulse in the

accelerating clearance is equal

Ap = eETL C.

Divergence from the regular increase with the random error in the

field and in the phase will comprise

6p = Ap 6'E0-tgFav\ /o

Hence, utilizing relationship/ratio (1.26), we obtain

6g =± "- - tgF .6' (1.105)SE0

Subsequently we will consider the random errors in field and relative

attitude of center as the independent variables, distributed in all

periods of the accelerating structure according to one and the same

probability law with the mathematical expectation, equal to zero. The

disturbances/perturbations of impulse/momentum/pulse (1.105) depend

on the number of period; the disturbance/perturbation is the greater,
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the lower the particle speed in the period.

Page 45.

Differentiating equality (1.104) and supplying/delivering/feeding

into into the differential

g -gasinT: v=Wcos.

it is obtained connection/communication between a change in the

amplitude of the oscillations and the disturbances/perturbations of

the instantaneous values of values 9% g in the n-th period:

6ga- = sin T,6g -= -- K

Hence it is apparent that for any particle the mathematical

expectation of the disturbance/perturbation of amplitude after this

period is equal to zero: g,, -0. A random increment in the amplitude

in the n period subsequently adiabatically attenuates. Toward the end

of the accelerator this increment, according to expression (1.94),

will give the following contribution to the amplitude

8g.= g, 1 (~ 6.

where %- particle speed in the n period; - particle speed at the

output of the accelerating system. After the W periods of the

accelerating structure total increment in the amplitude is equal to

N

A~ga= 6gaK )4*"-
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It is obvious that Ag3 =0 Thus, the mathematical expectation of an

increment in the amplitude of the longitudinal vibrations of each

particle after the flight/span through the accelerator under the

assumptions accepted is also equal to zero. However, since the

disturbances/perturbations of amplitude in each period are by chance,

net gain in the amplitude is distributed according to certain

probability law. Let us determine allowances for the random errors in

the accelerating system, after restricting possible dispersion Aga,

i.e. being assigned by value 1 .g,. The rms value of any random

variable x let us designpte by the curly brace

= . (1.106)

Let us assume that the errors of the accelerating systems in

different periods structure are independent. Then

N

(Aga)$ - V

W-0

The square of the disturbance/perturbation of amplitude depends on

the instantaneous frequency and on the phase of the longitudinal

vibrations of the given particle in the period

(6gn)2 = sinsW, (6g.)+ COS2 . - sin 2sg,o.

in question.
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Page 46.

The disturbances/perturbations of amplitude for different particles

prove to be different. We will consider that the region within the

separatrix is completely filled with particles, so that all phases of

longitudinal vibrations are equally probable, and averaged the square

of the disturbance/perturbation of amplitude on all particles. Since

in this case

sin"2 V .- cs -; sin 2',, =0,

that we will obtain

N

(Ag.) (6g.):(-- ~ (6 4r)'] (1j'!k

According to expressions (1.94), (1.105),

(6gn, - (6g3) ( 1.""

Hence

N .%

n-O U-0

Since a velocity increment in each period of structure is small, is

possible in the latter/last expression to replace sums with the

integrals:

N N

-2 3, dn.
0 0
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From relationship/ratio (1.27) it follows

011 = Am -(N-n) kWx.

Substituting f, into the integrals and producing integration,

finally we obtain

fw'L' ,6 ¢ (1.107)

where 6zOrt' = 2., . - . ;

6g 611 / L 4-0 ntg2 (po, I _' (118
'E 0  

(I. - -.

Page 47.

Into formulas (1.107), (1.108) are introduced some equivalent values

of the frequency of longitudinal vibrations and particle speed

-fr- t := -l , . ( I0 4

Functions f, and f, exist

f ( I 2 1 -- "
5 I-x~

2 I- x 
/ -

:3 I-x

Values ,, p, are not the average/mean values of the corresponding

parameters at the length of accelerator. From expressions (1.109),
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(1.110) it is evident that

If the contribution of all disturbances/perti;rbations to total

increment in the amplitude toward the end of the accelerator was

identical and equal to the contribution of disturbances/perturbations

in the latter/last period, then in formulas (1.107), (1.108) would

prove to be values Q/w and g, which correspond to the end/lead of the

accelerator. As noted above, the disturbances/perturbations of

amplitude in the first periods, other conditions being equal, are

more than on the latter. However, initial disturbances attenuate so

rapidly that their contribution toward the end of the accelerator

proves to be smaller than the contribution of the

disturbances/perturbations, which occur in the latter/last periods of

the accelerating structure.

With the change of argument x= - from zero to unity, function

f,((x) and f,(x) are changed in the limits

For the creation of certain supply in the allowances it is possible

to accept f,-f,=l. Then into formulas (1.107), (1.108) enter values 0

and j3 at the end of the accelerating system.
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From formulas (1.107), (1.108) it is evident that the

disturbances/perturbations of amplitude with the assigned errors in

the field and in the arrangement of the accelerating clearances

grow/rise with an increase in the multiplicity of the period of

structure. Therefore the high multiplicity is undesired and can be

caused only by serious design considerations. Most frequently they

select k=l.

As it was established/installed, the vertical spread/scope of

separatrix attenuates slower than the amplitude of oscillations g.

The permissible value of the rms value of increment in the

amplitude can be selected from the condition so that the particles in

the process of acceleration would not exceed the limits of the

region, limited by separatrix.

Page 48.

However, requirements for the monochromaticity of the accelerated

beam can make it necessary to dwell on lower values \AgR. For

evaluating the order of the appearing allowances let us examine

proton linear accelerator with the parameters, stipulated above: k=l;

W).=2.7.10 3-: cosp,=0,8; W0=700 keY; W,=24 MeV. We have

=0,04; =0.22; 1.- -- '=-5. 10'. The substitution of values into

formulas (1.107), (1.108) gives
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6Eo _ 2_ 40 6z 7
E70 4 - - 175 Aga

Let us accept the initial amplitude of the longitudinal vibrations of

the separatrix equal to vertical spread/scope at the input:

g-g',ac=0,073. At the output of accelerator gK0,008. Let us

establish/install allowances in such a way that the random errors in

the accelerating system would increase the scatter of particles in on

the impulses/momenta/pulses at the output not more than by 25o/o.

Then .ga,=O.002. Distributing allowances evenly between both basic

errors, we obtain

E 0  
0.

S6z

B. Systematic errors in the accelerating system.

Systematic we will call the errors whose distribution along the

axis of accelerator does not carry random character. Such errors,

besides a difference in the established/installed amplitude of

accelerating field from a precise value/significance, include the

calculated errors in determination of the factor of transit time and

lengths of the periods of structure, and aiso scale errors during the

longitudinal arrangement of drift tubes.
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Let us examine the accelerating system, assembled in a precise

conformity with calcultion, without the random errors. By this is

already assigned an increase in the length of each following period

of the structure of relatively of preceding/previous, i.e., is

assigned a partial increase in energy of synchronous particle in each

this period. At fixed value/significance X

AtL = k.

where

Hence, according to expression (1.10),

ek1

AL = EaTV cosq),- -- const. J.li1)

Page 49.

In the nonrelativistic approximation/approach 7--1 and, therefore,

E0T%
2cos F, = Co = const. (1.112)

A change in any of three values E,, T, X causes the mixing of the

synchronous phase

AqE,=ctg ' T 2  (1. 13)

In this case specific acceleration in the already assembled

accelerator is changed only with a change in the wavelength of
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accelerating field. Utilizing equalities (1.25), (1.112), we will

obtain

L1 14)

In accordance with equality (1.114) and final energy of synchronous

particle depends only on the wavelength of accelerating field. If

specific acceleration is constant along the length of accelerator,

then

W.= ' l,,. (I 115

where 1.- the path length of acceleration. A change in the parameter

X . can be connected with the real frequency switch of accelerating

field and with the error of scale during the arrangement of drift

tubes along the axis. For example, if due to the error with the

comparison of tape measure each scale division exceeds rating, then

the true value/significance X, which is determining the real

arrangement of drift tubes, will be less than the calculated, and

final energy of synchronous particle will prove to be above

calculated. Frequency stability of accelerating field always can be

made sufficiently high due to the quartz-crystal control.

The given considerations prove to be especially demonstrative,

if we examine particle acceleration in the equivalent traveling wave.

It is obvious that final energy of synchronous particle depends only
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on the speed of the traveling wave, which seizes particles, but it

does not depend on the amplitude of the traveling wave. In the

relativistic approximation/approach the picture qualitatively is not

changed, but the dependence of synchronous phase on the amplitude of

field and factor of transit time becomes more complicated; according

to expression (1.111)

EoT).cos W,( - '-eE,Tl; cosq,-'= const

Let us note that although energy of synchronous particle changes only

with the variation of the parameter X, the distribution of all

particles according to the energy spectrum depends on amplitude and

"inclination/slope" of field. Therefore, changing field, it is

possible in certain cases to move the maximum of energy spectrum in

the limits of separatrix.

The displacement of synchronous phase, connected with the

departure/attendance of the amplitude of field from the nominal

value, produces change in the frequency of longitudinal vibrations

(1.62) and phase factor (1.98).

Page 50.

The requirement of the stability of phase change of longitudinal

vibrations at the length of the accelerator superimposes the close
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tolerance for the retention/preservation/maintaining of the rating

value of field. We will use formulas (1.99). Since o=const,

For evaluating the allowance in the field it suffices to accept

nonrelativistic approximation/approach (1.113), since basic phase

change occurs with low energies. As a result we obtain

6 tA ) I 6E,
-%W 2sinsir, (1.116)

With an increase in the absolute value of synchronous phase the

dependence of phase change of longitudinal vibrations on the

amplitude of field is weakened/attenuated. On the contrary, at the

low absolute values of synchronous phase raid susceptibly/critically

depends on the amplitude of field. Let us examine a numerical

example. When W,. 2.7 10-3 and cos 0,7864 from the wave energy 700 keY
to final energ l oe,

in the linear by proton accelerator occur 6.5 longitudinal

vibrations. Being assigned 6(AT)=15-, we obtain -E =0,50.

Let us rate/estimate the effect of the rejected/thrown

corrections of the second approximation/approach to factor of transit

time and length of the period of the accelerating structure (see

S1.1). Correction to the factor of transit time is determined by

formula (1.20):

AT ak
T (.117)
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moreover in accordance with expressions (1.21), (1.62)

Y-.

Thus, correction (1.117) has maximum value with the energy of

injection, and then virtually monotonically decreases. Let us examine

the knowingly worse case, after assuming that the factor of transit

time is changed in the beginning of accelerator by jump. This will

give synchronous phase jump to the value, determined by equality

(1.13),

A%, = ctgqf " A--I T"
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Fig. 1.13.

Page 51.

The "instantaneous" synchronous phase jump increases the amplitude of

small phase oscillations b- the value of jump (Fig. 1.13) and

respectively increases the amplitude of the oscillations of the

impulses/momenta/pulses:

Equality (1.118) follows from relationship/ratio (1.103). As a result

we obtain

Ag, = --- :ctg.g T -o

The numerical this magnitude estimate shows that the effect of the

correction of the second approximation/approach is negligibly small.

Analogous result is obtained during the estimation of correction to
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the period of the accelerating structure.

c. Damage of the regular structure of the accelerating system.

The essential disturbances/breakdowns of the regularity of

high-frequency system are possible in by multi-resonator accelerator

on the transitions between resonators. If high-frequency fields in

the adjacent resonators are shifted relative to each other on the

phase value AQ, then this is equivalent to the shift/shear of

synchronous phase A, .x4 and is called an increase in the amplitude

of the oscillations of impulses/momenta/pulses (1.118). A similar

effect appears, if fields in the adjacent resonators are cophasal,

but they are distinguished by amplitude; according to expressions

(1.113), (1.118), we have

ag ctgF. w (.119)

The allowance for the stability of field in each resonator is the

stricter, the lower the energy of particles and the less the absolute

value of synchronous phase. This allowance usually proves to be wider

than the allowance, determined by the stability of phase change of

longitudinal oscillations (1.116).

In many instances the resonators of linear accelerator it is

necessary to divide according to the design considerations the idle



DOC = 82105202 PAGE

gaps/intervals, free from accelerating field. Idle gaps/intervals are

introduced for positioning/arranging of vacuum locks, -stations of the

beam monitoring, etc. Regardless of the fact, are terminated

resonators with half-tubes or half-gaps, idle gap/interval always

leads to the supplementary drift of particles, which distorts the

phase volume of small longitudinal vibrations. Fig. 1.14 gives in

coordinates *. g the phase volume of the beam before the idle

gap/interval. Volume is limited to ellipse 1 whose semi-axes coincide

with the coordinate axes. The section of the drift between the

resonators distorts the initial ellipse (curve 2), since each

particle, retaining impulse/momentum/pulse, is displaced on the phase

relative to field to the value proportional -- g.
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Fig. 1.14.

Page 52.

Dotted line (curve 3) designated the greatest phase trajectory in the

following after idle gap/interval resonator. The region, occupied

with the representative points of beam, rotates with the frequency of

longitudinal vibrations within the ellipse (curve 3). Therefore,

clusters after idle gap/interval begin to fluctuate.

Another source of the emergence of the pulsations, ,Kk ch lead to

an increase in the amplitude of oscillations of phases or

impulses/momenta/pulses, is a possible difference in the specific

accelerations in the adjacent resonators. The difference in the

values of specific accelerations causes the jump of the frequency of

longitudinal vibrations on the transition. The case when frequency at

the output of the first resonator 0, higher than frequency at the

input of the following Q,, is shown in Fig. 1.15a, and 1.15b - the
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case S2>S. Solid line limited the phase volume of cluster to the

transition. Dotted curves - phase trajectories of different particles

after transition.

Let I - length of idle gap/interval; V, g,- the coordinate of

certain particle at the input of idle gap/interval. The

representative point of this particle lies/rests on the ellipse,

which limits phase volume,

Coordinates of particle at the output of the idle gap/interval

92- g2=g1 . (1.120)

dt
In nonrelativistic approximation/approach - -=-wg (see l.45a).

Point ,. g2 lies/rests on certain ellipse

(1.12.1)
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@4 b)

Fig. 1.15.

Page 53.

Let us supply in equation (1.121) values _,,g from equations (1.120)

and will find the pair of coordinates W,, g,. for which amplitude D. it

has the greatest value/significance. Fcr this let us represent lii .

in the form

' =(D, sin T; g, (,1 Co, o 4-

and let us find value/significance qv, corresponding to extremum w.
As a result we obtain

4. °1.22)

(D.,

where =2 - . (I. 123
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If RZ= , then relationships/ratios (1.122) are reduced to the

simpler

-5_ 4-

Usually c<<!; in this case

(I.124a)

The effect of idle gap/interval on the energy scatter of particles is

the less, the higher the energy of particles upon transfer. However,

even with comparatively high energies idle gaps/intervals noticeably

affect the parameters of beam. Thus, output energy of the first

resonator of the linear accelerator of protons 1-100 is 43 MeV; the

frequency of longitudinal vibrations in this place S~~0.03w. With

l=2AX the amplitude of longitudinal oscillations increases by 20o/o.

In the absence of the idle clearance a=0 and formulas (1.122)

lead to two cases

1) 91 <Qj; g% -, ga,: (D,=~-~

2) 02>Q~;
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Page 54.

Chapter 2.

Transverse vibrations of particles in beams with the negligible

density of space charge.

S2.1. Defocusing factors in the linear accelerator.

In the linear accelerators must be provided special measures for

the beam focusing of the charged/loaded particles. It is necessary to

create either the supplementary permanent fields, intended for the

retention of particles near the axis of accelerator, or the special

configurations of the high-frequency field, which permit implemention

of simultaneously acceleration and focusing. If such special measures

are absent, then beam of particles diffuses. It is possible to

name/call three basic factors, that lead to the defocusing of beam in

the linear accelerator: 1) the disordered scatter of transverse

thermal particle speed; 2) the defocusing action of accelerating

field; 3) electrostatic pushing apart between the

similarly/analogously charged/loaded particles of beam. Let us

discuss the first two factors. Latter/last factor is in detail

examined in Chapter 3.
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The particles of beam possess disordered component of velocity

on all three coordinates, caused by thermal particle motion. Particle

distribution according to the thermal velocities decends on

temperature and configuration of source. If the disordered component

longitudinal velocity it is possible to disregard in view of the fact

that it usually to is many orders less than the regular component,

then disordered components of transversing speeds substantially

affect the behavior of beam in the accelerator. Specifically, due to

the presence of the transverse thermal velocities beam of particles

in the accelerator or in the ion guide never succeeds in gathering in

the point focus. Since there are always thermal velocities, directed

outside of beam, the latter diffuses during the free drift of

particles (30]. Due to the scatter of particles on the speeds and on

the attitude the representative points of beam occupy final volume in

the six-dimensional phase space. In accordance with Liouville's

theorem six-dimensional phase volume is invariant in the space of

canonical-conjugated/combined variable/alternating.

Page 55.

Will examine the projections of six-dimensional phase volume on the

phase planes z, p, (or V. pv). x. p.: y. P!. In the general case
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Liouville's theorem does not require the invariance of each

projection. However, a change in two graduated phase volume on one of

the planes produces change its on other planes due to the invariance

of six-dimensional volume. There is an important special case when

variable/alternating in the equations of motion are divided. Then

Liouville's theorem proves to be valid for each subspace

individually. Let us examine the character of transverse particle

motion in any plane (for example, XOZ) depending on the form of the

two-dimensional phase volume of beam in coordinates x, x'=dx/dz.
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b)

Fig. 2.1.

Key: (1). Beam of the in parallel moving/driving particles. (2).

Homocentric ray. (3). Beam with finite phase volume.

Page 56.
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In Fig. 2.la all particles of beam move in parallel to axis and,

therefore, they have zero transverse component of speed. In

accordance with this the representative points lie/rest on the axis

of abscissas and occupy the cut, equal along the length to the

diameter of beam. The phase volume of beam is equal to zero. In Fig.

2.1b particles move over straight paths, which converge to one point

(homocentric ray). The transversing speeds of particles in this beam

are proportional to misalignment. The representative points with the

assigned longitudinal coordinate z prove to be in the rectilinear

cut, inclined toward the axis of abscissas. To particles in section 1

(see Fig. 2.1b to the left) correspond the representative points in

cut I (see Fig. 2.1b to the right). The projection of intercept on an

axis of abscissas is equal to the diameter of beam. With further

particle motion of the cuttings off it rotates clockwise and it is

lengthened (see cut 2). The phase volume of beam remains equal to

zero. To convergent beam corresponds cut with the negative

inclination/slope. Homocentric ray with the aid of the

adequate/approaching lenses always can be converted into the beam

parallel to the moving particles. On the other hand, lens with the

nonlinear fields is converted rectilinear cut on the phase plane into

the curve, retaining zero phase volume. Fig. 2.1c gives envelope of

particles with the phase volume of finite quantity. In this beam at

each given distance from the axis can be located the particles whose

speeds are continuous in certain finite interval of velocities. Let
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the phase volume on plane x, x' be limited by ellipse. To convergent

beam corresponds ellipse with the negative inclination/slope of major

axis (curve 1); to divergent beam - ellipse with the positive

inclination/slope of major axis (curve 3). The projection of ellipse

on the axis of abscissas is equal to the diameter of beam at the

particular point z. During the free drift of particles the phase

volume of convergent beam rotates clockwise, since all representative

points move in the positive (with x'>O) or negative kwith x'<O)

direction along the axis of abscissas, without changing transversing

speed. At certain point z the major axis of the ellipse coincides

with the axis of ordinates (curve 2), which corresponds to the

crossover of bundle. At the point of crossover envelope of particles

is parallel to longitudinal axis. Subsequently, after crossover, the

beam with the final phase volume diffuses even in the absence of any

other defocusing factors.

With the particle motion in electromagnetic field the

generalized momentum, canonically conjugated/combined with the

Cartesian coordinates, is the variable/alternating [21]

P-p+eA, (2.1)

where p-mv - particle momentum; A - vector potential of field; Bfrot

A. If in the magnetic field is absent longitudinal component (B:.=O),

then A,-A,-o and P,-p,; P1-p,. Thus, during the motion in plane XOZ,

which does not depend on the remaining variable/alternating, and when
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B,=O phase volume is retained in variable/alternating X, Px.

Page 57.

Let us name/call the two-dimensional transverse phase volume of beam

value

Vn - W 7 dxdp. 2.2,

where the integral is taken by entire volume, occupied by the

representative points of beam on plane x, p. In other words, K-

divided on r the area, occupied by beam, on the plane displacement -

given impulse/momentum/pulse.

Frequently as the measure of the phase volume of beam is

considered divided on r the area, occupied with the representative

points of beam on plane x, x'-dx/dz:

E= -! dxdx'. (2.3 1

This value is called the emittance of beam. The emittance of beam is

connected with the transverse phase volume with the

relationship/ratio

E = V-  (2 41

Emittance is convenient as the value, usually directly determined
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from the direct measurements. Furthermore, emittance is conveniently

used, as this will be clearly from the following, in the theory of

the circular accelerators. However, in the theory of linear

accelerators to more preferably use the concept of transverse phase

volume (2.2) as by the value, not energy-dependent of particles.

Emittance is determined on the plane of the variable/alternating,

which are not canonical-conjugated/combined. With an increase in :he

energy of particles the emittance of beam decreases and it vanishes

with -  Respectively it vanishes scatter of path inclinations.

With the low energies the decrease of the scatter of trajectories is

connected in essence only with an increase in the longitudinal

velocity of particles. With the relativistic energies the dominant

role begins to play Pn inrrease in Lorenz's factor. The decrease of

the scatter of trajectories with an increase in the energy of

particles leads to the fact that the beam of relativistic particles

in the short sections of drift does not need focusing. One should,

however, note that with the distance of drift in several ten meters

has already been perceived the deliquescence even high-energy

electron beam.

The particles, seized into acceleration mode by the axisymmetric

high-frequency field, test/experience in this field transverse

defocusing. Defocusing occurs under specific conditions, which are

usually satisfied in practice. Actually/really, the equation of
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motion of particles in the field takes in the general case the form

dp- eE-elvBl.12

Page 58.

Let us accept cylindrical coordinate system r, o, z with z axis,

directed along the axis of accelerator, and will examine the

axisymmetric field, type TM, E,,=O; B,=B:=O. Then

P e (E, -v B,.

where v - the longitudinal velocity of particle. As it is easy to

obtain,

d2
r Lip .° - Iny (2.6)

moreover Lorenz's factor is determined only by the longitudinal

velocity of particle, since the transverse components of the velocity

substantially lower than longitudinal. Coefficient with first-order

derivative in the right side of equation (2.6) is low, since ln 7 -

slow function of time. If we examine by the component/term/addend in

the right side of equation (2.6) it is possible to disregard.

Detailed estimations show that at the usually utilized in the ionic

accelerators values of specific acceleration the effect of the

rejected term on the particle motion is negligibly small up to 7-2.

Thus,

LI
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e r

t-= E,-vBI). (2.7)

Further, for the points, close to the axis, from the equations

of Maxwell

E, ±d ' =0: . .. --- (2.8)
O r dz r dr CT

considering that on axis E,=B,=O, follows

E, r; B, = - . - r. (2.9)

Hence
d2

r e 0OE, t' dEz (2.10)

Let us examine, first of all, particle motion in the field of

traveling wave (1.43). According to equation (1.43),

OE, OE,- z (2.11)

dE, -- E sin q). (2.12)

Substituting equalities (2.11), (2.12) in equation (2.10) and taking

into account designation (1.25a), (1.62), (1.82), for the paraxial

particles, close to synchronous (9q-.; vzv,), we obtain

S 'r 0. (2.13)

Longitudinal vibrations in the linear conservative
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approximation/approach are described by the equation, which follows

from expression (1.72)

do- 
+  -=O. (2.14)

Page 59.

From equations (2.13), (2.14) it is evident that the stability

conditions for longitudinal and transverse vibrations in the

traveling wave are incompatible. If sin (h<O. then 12>0 and the

longitudinal vibrations of particles are stable, but transverse

vibrations prove to be unstable.

The defocusing action of accelerating field, just as the

defocusing action of the scatter of thermal velocities, decreases

with an increase in the energy of the particles: with /--l we have

0 2-->O. This is explained by the fact that the magnetic component of

high-frequency field in contrast to electrical focuses particles,

moreover with an increase in phase wave velocity the action of

magnetic field is intensified. In the limit, with --1,. effect of

both components of high-frequency fields to the transverse particle

motion is compensated.

Let the particles be accelerated in the field of standing waves,

for example in the accelerating system with drift tubes. The
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sag/sagging accelerating field in the clearance between drift tubes,

connected with the edge effects, leads, according to equation (2.9),

to the appearance of a radial component of field (Fig. 2.2). Let us

recall that the electrostatic field between two diaphragms always

acts as the converging lens independent of the direction of field

[31). Actually/really, let us suppose that the field is directed

along the particle motion. Then particle obtains at the input of

clearance the supplementary transverse impulse, directed toward the

axis, and at the output - from the axis. Since the particle speed in

the clearance grows/rises, refraction of trajectory at the input

proves to be more than at the output, and as a result particle

trajectory is inclined axis. When field has opposite direction, then

the particle speed in the clearance falls, but the defocusing action

occurs at the input of clearance, and that focusing - at the output.

In the linear accelerator the field in the clearance is changed in

the time, moreover for the particles of those moving near the

synchronous, E.<E. so that the defocusing radial component at the

output of clearance exceeds the focusing radial component at the

entrance. If field is changed sufficiently slowly (which occurs at

the low absolute values of synchronous phase), then will prevail the

effect of an increase in the particle speed in the clearance and

clearance as a whole will be the converging lens as in the

electrostatic case. But if field change for the time of flight of the

particle along the clearance is sufficiently great, then the effect
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of a velocity increment does not compensate the difference in action

of radial components at the entrance and output and clearance will

act as diverging lens.

Equation (2.10) describes particle motion in the accelerating

clearance, if E.- the field, concentrated in the clearance. Let us

establish connection/communication between derivatives 3 and 2k.

being limited to the first running harmonic of Fourier-expansion of

field (1.42). Taking into account equality (2.11) we obtain

d~r e dE

- i y z . 2(2.15)

Fig. 2.2.
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Page 60.

Let us rate/estimate, on the basis of equation (2.15), refraction of

the trajectory of synchronous particle in the accelerating clearance.

In this case we will consider that the particle displacement at the

gap length is not changed, and we approximate field in the clearance

by "square wave" (E,=O when Z-z, >g2 and Eg=const when z-zo <g2.

Examining equation (2.15) in one period of the accelerating

structure, let us pass from differentiation with respect to time to

differentiation on the longitudinal coordinate; in the

nonrelativistic approximation/approach

dr e 8E,
(2.16)

Fracture of trajectory at the entrance of the clearance
-g12

A d e r ('2 dE-ZF dz,

or

Analogously at the output of clearance we have
Ad-r-- e

dz 2mooL

Total refraction of trajectory on the clearance will comprise

-t er f .. E ,__( 2 )1

AE, - En,) - E,(.2);
Av == u. - vu.
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Then in the first approximation,

A dr 2E1 ~ i 2 -i (2.17)

From expression (2.17) it is evident that with satisfaction of the

condition
At, <AE-L(2.18)

V 2E,

the accelerating clearance acts on the particles, close to the

synchronous as diverging lens. In accordance with the approximation

Efa,) Egcos -- , ; (p. ; E:,.=.)Egcos 'i (p,' . (2.19)

agcepted.
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Hence
AL.
2E- sllnta tg ,,

where a - coefficient of clearance (1.23). Taking into account

equality (1.27), it is possible to reduce condition (2.18) to the

form
kW 2.18a)

If W, = 3.10 : = 0.04. = 1/4, then the accelerating clearance will work

as the converging lens only when tgf, < 0.1 or (p. < 6> The capture

region of particles on the phases proves to be in this case

inadmissibly to small. At the virtually acceptable values of
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synchronous phase the defocusing action of variable field is so great

that usually it is possible to disregard the effect of acceleration

in the clearance. With an increase in the energy of particles

inequality (2.18a) is amplified, which virtually reduces to zero

regions of the stable phases in which the accelerating clearance

focuses particles.

In the ionic linear accelerators is most frequently utilized the

strong focusing by quadrupole lenses. In the electron accelerators

and sometimes in proton the particles are focused by longitudinal

magnetic field. Structural/design complexity and high cost/value of

the technological equipment, intended for the crcal on of :e

external focusing fields, makes it necessary to search for the

methods of focusing due to the adequate/approaching geometry of

accelerating field itself. Historically the first method of beam

focusing in the proton linear accelerators was grid focusing
[7, 32, 33] which happens to be one of the types of fozusing ty sears

accelerating field. Grids or foils, which closed the entrance of

each drift tube, created the geometry of field necessary for the

focusing in the clearances. However, from grid focusing at present

they refused due to the exaggerated losses of beam current in the

accelerator and due to others, less essential ones,

deficiencies/lacks. From other proposed in the different time methods

of focusing due to accelerating field is most promising, apparently,

the use of high-frequency quadrupole lenses [34]. This method, based
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on the failure of the axial symmetry of accelerating field, is at

present studied theoretically and experimentally [35-37], but

practical use/application thus far it did not find.

S 2.2. Strong focusing. Quadrupole lenses.

In the managements/manuals on electron optics usually in detail

is examined the particle motion in the longitudinal magnetic field

(optician Busch). The fields of solenoids were utilized for the

focusing of electron beams in different areas of technology even long

before the appearance of accelerators.
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With the particle focusing of high-energy by longitudinal field basic

motion is directed in parallel to magnetic lines of force, so that

the appearing forces are proportional to small transverse components

of speed. It is obvious that more effective would be the magnetic

field, directed perpendicularly to motion. Then the focusing forces

would prove to be proportional to the longitudinal velocity of

particles. Analogous situation occurs, also, with the particle

focusing by the electrostatic fields. It is desirable so that the

lines of force of the focusing electrostatic field would be in

essence directed perpendicular to longitudinal particle motion.
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However, in the space, free from the charges or the currents, it is

not possible to form the fields which would create the radial forces,

directed toward the axis simultaneously at all angles. In particular,

fields with the quadrupole symmetry (Fig. 2.3), directed created

toward the axis of force in plane x, simultaneously create the

defocusing forces in plane y. Fig. 2.3a depicts magnetic quadrupole,

moreover it is assumed that the particles move from the plane of

drawing to the reader, while in Fig. 2.3b - electrostatic quadrupole.

If we place along the axis quadrupole lenses then so that the

adjacent lenses would be turned relative to each other on 900, then

in each of the planes will be alternately created the focusing and

defocusing sections. With satisfaction of the specified conditions

this System of lenses proves to be focusing. Actually/really, to the

particle, which moves accurately along the axis, the forces do not

act. The further the particle from the axis, the greater the acting

forces. This makes it possible to understand, why two

consecutively/serially confronting lenses, expanded/scanned on 900,

can focus in both planes. Let the particle fall first in the focusing

section. In this section the particle trajectory is bent towards axis

(Fig. 2.4) and particles will pass the defocusing section with the

smaller divergence from the axis, than in the first section. The

focusing forces prove to be more than defocusing, so that as a whole

the pair of quadrupole lenses proves to be accumulating.
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Fig. 2.3.•
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A similar effect appears also in such a case, when is at first

arranged/located the defocusing section: particle displacement from

the axis in the defocusing section is less than on that focusing. In

this, speaking in general terms, and consists the idea of hard/rigid,

or alternating, focusing. From the given qualitative picture it is

evident that with the strong focusing the fundamental

value/significance has a presence of field gradient. If field

gradients in the quadrupole lenses are too great, then already, after

the focusing section particle can cross axis and then the defocusing

section deflects trajectory in other direction from the axis. The

pair of lenses will prove to be scattering.
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The strong-focusing channel consists of a large number of

consecutively/serially alternating focusing and defocusing sections.

In this channel there is a clearly expressed periodicity of

structure. The smallest length of the repetition of structure we will

call the period of focusing field S. OnP%.2.5 is schematically shown

the particle trajectory in the strong-focusing channel. Trajectory is

modulated with the period of focusing field. In all focusing sections

the particle on the average is distant from the axis more than on

adjacent those defocusing. The stability conditions of

oscillations/vibrations in the long channels differ from the

conditions, under which the combination of quadrupole lenses F and D,

which constitute one period, is accumulating. The object/subject of

our further examination in essence will be the theory of the channel

optic/optics which is more complicated than the theory of one

converging lens.

The period of focusing field can consist of different

combinations F- and D-quadrupoles.



DOC = 82105204 PAGE

Fig. 2.4.

Fig. 2.5.
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The advantages and disadvantages in one or the other type of channel

depend on the concrete/specific/actual requirements, part of which

will be discussed below. Some possible types of channels are given in

Fig. 2.6. The lenses, united structurally/constructurally (for

example, arranged/located within one drift tube), are conditionally

shown confronting close friend from to friend.

Strong focusing was for the first time proposed for the linear

accelerators by Blewett (27] and it is now best of the possible types

of focusing. From the moment/torque of the discovery of the principle
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of strong focusing [38] to the investigation of the rectilinear

strong-focusing channels and separate quadrupoles are devoted many

works [39-56].

Before passing to the optic/optics of channels, let us examine

quadrupole lens. Let us assume for the concrete definition that the

lens is magnetic. Then let us transfer results for the electrostatic

lens. Without examining thus far the effect of edge effects, let us

suppose that lens - infinitely long, so that the problem about field

distribution is reduced to the flat/plane: B1 =O. Field in the

aperture of lens satisfies the equations of the statics

rot B=O; div B=O.

Hence for two-dimensional problem we have
8B1 a3Bv  dB, dB v  d B~ 0  (220a. -= _ --iT. -i-; -. =- = 0. (2.20)
ay X- a x az -a

The components of field are changed in the limits of the aperture

(see Fig. 2.3).
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S

Fig. 2.6.

Key: (1). Triplets.
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For example, component B. it is positive in the upper half-plane

(during the distribution of poles, indicated in Fig. 2.3); with the

decrease of ordinate value B,, decreases and then is reversed the

sign upon transfer of the ordinate through zero: B,<O with y<O. It

analogously behaves component B,- Let us introduce into the

examination the gradients of the components of the magnetic field

' m W.w
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grad B. = i d-- j8

2.21,

gradB.=i

Utilizing equalities (2.20), it is possible to represent the gradient

of the vertical component of field in the form

gradB,=i , -J

Consequently,

gradB.'=IgradB. gradB,-igradB =O.

Thus, at each point of field the gradients of components are equal on

the modulus/module and they are mutually perpendicular. The gradients

of components are usually called simply field gradient. Let us

introduce designation for the field gradient

G= gradB 1 . (222)

The directions of gradient (2.21) are called the median axes of lens.

Median axes intersect in the beginning of coordinates always at the

right angle.

Let us introduce the potential of the static magnetic field

B = grad Uo.

Potential U# satisfies the equation of Laplace which is conveniently

examined to account for quadrupole symmetry in the cylindrical

coordinates:

dIU* . I ou I 'L.
-* -y,-O -rj- 0. (2.23)
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The general solution of equation (2.23), final in zero, takes the

form
Ub (r, ) -' r" (a,, sin np -- b,, cos nr q.

where n due to the periodicity of potential along the azimuth - whole

real numbers. The quadrupole symmetry of field in the most general

case superimposes the following conditions on the potential (see Fig.

2.3):

L, (r,.O)=UOr 7, =0;
(. (2.24'
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From the first two equalities it follows: b.=O, n=2k. From the

latter/last condition we obtain k=2m+l. Consequently, the potential

of the field, which possesses quadrupole symmetry, contains only the

even, through one, harmonics

U,(r, 9)= a2(2a+i)r 2(2m+l)sin2(2m4 +1)q. (2.25)

The first terms of series/row (2.25) exist

U, (r, q)= aor2 sin 2 9)- ase sin 69 -- a,or'O sin I4--... (2.25a)

Hence

BL -' 40 {= 
2a.r cos 24 + 6ar' cos6 --- I0aor' cos 10 -....

The vertical component of field at points on the axis of abscissas

takes the form

Bj,(x, 0) = B, (r, 0) - 2a~x + 6aex' + IOajx' -... (2.26)
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Let us name/call the lens of ideal, if field gradient is constant in

the section of aperture. The pole of ideal lens they are limited by

hyperbolas. Actually/really, with the high accuracy on the surface of

the poles, prepared from the magnetic material with large

permeability L'U,=const. Since x=r cos 0, y=r sin o,

Ut(x. y)=2a2xy--2a(3X'-lOx2y--3y
4)xy-....

Boundary conditions are satisfied on surfaces of xy=const with

a,=a,, ... =0. In the ideal lens

' = Gxy; G=const;

(2.27)
B = Gy; B1,=Gx.

In the electrostatic lens median axes are turned relative to

magnetic lens on 450 (see Fig. 2.3). In expression (2.25a) the sine

of dual angle converts/transfers into the cosine. Therefore for the

ideal electrostatic lens

U* (x' -ys);
(2.28)

E,, - Gx; E,, =-Gy.

In the strong-focusing channel, which consists of the ideal

lenses, the equations of motion of particles are linear. The

nonlinear components of focusing field (2.26) cause the distortions

of phase volume, which lead to the losses of particles or a

deterioration in focusing [52]. Therefore one should approach that so

that the focusing fields would be linear possible.
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Allowance for the nonlinearity of the field of quadrupole lenses in

the strong-focusing linear accelerator is evaluated below. In

practice it is not possible to perform lens with the ideal hyperbolic

poles. In the magnetic lenses it is necessary to leave places for

distribution of windings, in the electrostatic ones the length of the

generatrix of pole is limited to the permissible breakdown voltage.

Meanwhile hyperbolic of pole with ragged generatrix lead in many

instances to the nonlinearity of field, which exceeds nonlinearity

with the poles of another form. In the small quadrupole lenses,

intended for the arrangement/position within drift tubes, usually

they prefer to utilize pole with the flat/plane profile/airfoil,

which leaves more than winding space. The necessary linearity of

focusing field can be ensured, if beam section (taking into account

the oscillations/vibrations of beam as whole) it is considerably less

than the magnetic aperture of lens. This however, makes it necessary

to increase magnetic aperture, which is extremely undesirable from

the point of view of maximum core induction and the power scattered

in the lens, and sometimes also it is impossible.

From expression (2.26) it is evident that in the nonlinear

focusing field are present the members of fifth, the ninth and so

forth of degrees. The nonlinearity of field can be considerably
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decreased, if to fit this form of the rectangular profile/airfoil of

the pole piece, with which of expansion (2.26) will fall out the

member of fifth degree [53]. Let us note that the suppression of the

member of fifth degree is possible not with any form of

profile/airfoil. Since the break of hyperbola leads to relative field

weakening on the edges of operating region, then for decreasing the

nonlinearity of field is necessary the profile/airfoil, which speaks

in favor of hyperbola to the side of operating region. One of the

possible forms of this profile/airfoil is rectangular pole. Fig. 2.7a

gives one of four right-angled pole pieces. For reasons of symmetry

it suffices to examine potential distribution in one quadrant of

plane x, y.



DOC =82105204 PAGEI

/

10

Fig. 2.7.
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If we introduce the complex coordinate z=x+iy, then expression for

potential (2.25) will take the form

M-0

Hence it is apparent that the series/row

W (X, y) N1M

this is complex potential of the flat/plane quadrupole field

W (X, Y) - Vob (X. y) - iL , (X, y).

where V, - function of flow. Complex field B=B, -iB, is determined

by expression [57)

B =

Complex potential can be found, if to produce conformal mapping of

the region, limited by coordinate semi-axes and the generatrix of

pole, onto the single band of plane W then so that the coordinate
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axes would pass into straight line UD=0, and generatrix - into

straight line Uj=I. According to Schwarz-Christoffel theorem [57]

the conversion

d ~ ('2-a2)
1 

4 (2-.. I) ;II

transfers/translates the region of plane z indicated to the upper

half-plane of complex variable . The parameters of representation a,

b depend on the coordinates of the salient points of pro.file/airfoil.

The constant C is determined by the circuits/bypasses of the infinite

point of region on plane z and the point =l corresponding to it on

the plane . The function, which reflects half-plane to the single

band, exists

2

Calculation leads to the following expression for the coefficient

with the sixth harmonic of the potential

3:0 a2(&2-) (2ab-L-3b- 6a),a6= Fig ba (a 2- 1)

moreover the sizes/dimensions of the pole (see Fig. 2.7a) they are

connected with the parameters, a, b with the equalities

it 2 (as- )/4 1 - C'3

12 _ 2 (a2-)' (bs-- )' '2d
13 t (bs-1)'' ( -_ 2)';(s- )"

Page 69.

Thus, by the adequate/approaching identification of parameters a, b
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and respectively the sizes/dimensions of profile/airfoil it is

posziible to reduce coefficient a, to zero. In this case coefficient

a,0 noncritically depends on selection a, b. One of the possible

combinations of the sizes/dimensions of the pole piece, which ensures

the suppression of the sixth harmonic of potential, exists 1,=0.4852;

1=0.5741; 1,=0.7700. Distance from the axis to the pole is accepted

by the equal to unity. For the comparison Fig. 2.7b shows trapezoidal

pole with the apex angle of 300. This pole is used in the quadrupole

lenses of linear accelerator on 50 Mev in CERN. Field measurements

showed [561 that on radius 0.75 in the lens with the suppressed sixth

harmonic the gradient differs from its value/significance in zero for

5o/o, and in the lens with the pole, shown in Fig. 2.7b, to 20o/o. In

the latter/last lens the divergence of gradient of 5o/o occurs on

radius 0.57. The relative deflections of field respectively are

everywhere less.

In the short lenses occurs the "sag/sagging" of field after the

edge of lens and gradient depends on longitudinal coordinate.

Potential satisfies the equation
0-2U'0  1I u' I d2L., % 0.

Dividing variable/alternating, we obtain the following

general/common/total expression for the potential of the short

quadrupole lens: *M

U0 (r, (p, z)= aT (k) I1.2 (kr) sin (4m - 2) qe"-dk. (2.29)
.Wm~
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The vertical component of field on the axis of abscissas is equal to

8:,(X. Z) 2 X'(m- ar~()L : ' k

Expanding the modified Bessel functions in power series [28], we

obtain

B (x, z) = j(z) x4 "' --. (2.3)
m=d ;sO)

where

Amj (z) 4m-2 7 k_(2m-;+l'a 2 ek) e':dk.
4

2
m+B -j! (4m- --- )!

Series/row (2.30) is conveniently represented in the form

B,,(x, z)= (z) x-- A,.(z x4'01+1-

,n= t
-7~~~~~~~r A (z 1~ X111 1

' -AM,(z) + - " ..,, (Z) (2.30a)
47= 1 ) t

Page 70.

Function G(z)=A(z) - field gradient on the axis of the short lens
G (z) - JB (0, z). (2.31)

Coefficients Aoj(z) are determined by the course of gradient on the

axis: )(-) dG (Z)
(Z) 2k-Ij(2I + )I (21-

it is substantially different from zero only in the edge/boundary

sections of lens. The remaining coefficients of series/row (2.30a)
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depend both on the edge effect and on the profile/airfoil of the pole

pieces, moreover coefficients Am0 (z) during the limitless elongation

of lens approach within the limit the appropriate coefficients of

series/row (2.26), which corresponds to field with the assigned

pole-piece configuration. In contrast to the field of infinrely long

lens in resolution (2.30a) are present the members of all odd

degrees. However, it is possible to show that in the short lenses the

contribution in the refraction of trajectory give only coefficients

.4m. Therefore the considerations given above about the selection of

pole-piece configuration retain value/significance, also, for the

short lenses. It is possible to investigate the effect of

nonlinearity on the particle motion in the channel, being limited to

the sum

B, (x, z) = G (z) x - _ ., (z) x4 'T +l . (2.32)

Disregarding all nonlinear terms of expansion, we obtain

following approximate field expression in the short lens:

B, ( Z)-G (z)x. (2.33)

If we in the expression for potential (2.29) hold down/retain only

the term, quadratic relative to r, then let us arrive at the equality

U*(x, y, z)= G(z)xy. (2.34)

Hence it follows that approximate equality (2.33) is correct for any

values of the ordinates

By(x, yiZ/ is re (z)uX. (2.3a)

Approximation/approach (2.33a) reduces to the linear equations of
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motion. The simplest approximation of the field of short lens - these

are approximation by "square wave": G(z)=const at the length of lens;

G(z)=0 out of the lens.. This approximation can be refined, if we

instead of the real short lens introduce into the examination

equivalent lens with the constant gradient and to fit its lenqth and
eriln sense eoiva ent to 'ne acWion D' a rea lens. -- he choice

gradient then so that the action of this lens would be in aA of

equivalent lens let us examine below. Fig. 2.8 shows the course of

gradient on the axis of real short lens.
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The initial parameters for the rational design of quadrupole

lens are the gradient of focusing field and distance from the axis of

lens to the pole. The ampere turns, necessary for the creation of

field with the assigned gradient in the magnetic lens, can be

determined, on the basis of the general/common/total integral

relationship/ratio
r = 6ds.

The corvenient way of integration is shown in Fig. 2.9 by dotted

line. During the calculation of integral on the left side let us

disregard/neglect magnetic intensity in the core. Let us assume a is

the distance from the axis to the pole (see Fig. 2.9). Then

Hd HIdy.
r

11 I2
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In the linear approximation/approach to a field between the poles

H1 = I Gx,
ILo

where g.=4w.10-'; on the way of integration x=a 2. Hence

r
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-*, L~J 2 J :,

Fig. 2.8. Fig. 2.9.
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Integral in the right side is equal (see Fig. 2.9)

f6ds=2NI,

where NI - number of ampere-turns, which fall to one pole. Equalizing

both integrals, we obtain

NI =- 10.Gal.

Empiricism established/installed, that to account for steel core a

number of ampere-turns should be increased by lOo/o. This gives

NI = 0,44. IOGat. (2.35)

In the system of SI units the induction of magnetic field is measured

in the tesla: 1 T=104 G. Usually during calculations of accelerators

is more convenient to measure the induction in the gauss, and the

gradient of magnetic field in the gausses per centimeter:

0 ac'cA lO00 I.. (2.36)



r
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Key: (1). mi/m.

Converting/transferring in formula (2.35) to the gradient in the

gausses per centimeter and to the length in the centimeters, we have

NI=O,44Ga2 . (2.35a)

It is easy to obtain also formula for the power, scattered in the

quadrupole lens, with the supply of windings by the direct current:

P 6,1. -L G2,a4Sol (2.37)

Here P - dissipated power, W; p - specific winding impedance, n*cm;

- average/mean length of turn, cm; S, - total area of windows for

positioning/arranging the windings; f - duty factor of window, equal

to the ratio of the total cross section of copper to the area of

window; G - gradient, G/cm; a - radius of magnetic aperture, cm. From

formula (2.37) it is evident that the dissipated power grows/rises

proportional to the fourth, the degree of a radius of aperture. This

is one of the most serious factors, which limit the aperture of the

strong-focusing channel with the supply of quadrupole lenses by

direct current.

For the electrostatic lens in linear approximation/approach

(2.28) we have

V.± Gat, (2.38)
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where G - field gradient, V/cm2 , V - potential on each electrode

relative to the earth/ground (see Fig. 2.3b).

Let us compose the equations of motion of particles in the

strong-focusing channel taking into account the space charge of beam

and defocusing action of accelerating gaps. Repeating the

considerations, given above relative to formula (2.6), we have

dp d2r
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Thus,

F, (2.39

where F - total force, which acts on the particle. This force it is

possible to represent in the form of three components

F = F. - F, - Fb.

Here F. - force, which acts on the particle from the side of

high-frequency accelerating fi:ld. The amount of this force in

axisymmetric accelerating field of the type TM was found above [see

equality (2.15)]. In the Cartesian coordinates

e fOE:F,, = -- 7 - (z) -V;

e . E,
= - 2 (z) y: (2.40)

F,. = eE.,
F,.- the force of electrostatic pushing apart. U, A - scalar and

vector potentials of the proper field of the charged/loaded particles
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in the coordinate system, rigidly connected with the accelerator

(laboratory coordinate system). If E..Bj - corresponding proper

fields, then in quasi-steady-state approximation/approach

E.i -- ,trad U: B, = rot A. 2.4 u)

Since in the coordinate system, which moves along the longitudinal

axis with the particle speed, the vector potential is absent,

according to the formulas of the relativistic conversion of

potentials, in the laboratory coordinate system we have
A.,4, - 0: A.= . -v L.(.2

Actually/really, let us designate values in the moving/driving

coordinate system by indices t..aj then in general case [58]

A.= Ay(; -4 t,. U L

When A.=O we obtain expressions (2.42). Further, in view of the

Lorentz decrease of distances Aza=0z, where Az, - interval, measured

by observer, who moves together with Ts-system. According to the

formulas of the relativistic conversion of fields [58] E 1 E,. Hence

E= = - -& -- • (2.44)
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According to expressions (2.41), (2.42), (2.44), the components of

the proper field of particles take the form

B - U B=O (2.45)B=, -L - L -;B = "--; B B 0, .
CS dyC2 I
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Substituting expressions (2.45) into the formula for electromagnetic

force (2.5) and disregarding the transverse components of speed, we

obtain
e U F e IL' e dU (F .= yxb '  = - "-- ; F. -- ' 2. 46

Fb - the focusing forces, connected with the fields of quadrupole

lenses. Substituting the values of fields B.(x, y, z), B,(x, y, z) into

formula (2.5) and disregarding the transverse components of the

speed, we have

FX*= -evBy(x, y, z); F,$=evB2 (x, y, z); F0=0. (2.47)

S i n c e B By = -!
Since B1 = - B - that in linear approximation/approach (2.34)

F4 -evG(z)x; F,*= evG(z)y; F* = O. (2.47a)

Vor electrostatic fields (2.28) in the same linear

approximation/approach

F, =0ex; FA=-eGY; F,==0. (2.48)

Hence it is apparent that electrostatic quadrupole is equivalent to

magnetic, if field gradient in electrostatic lens Ga is connected

with the field gradient of magnetic lens G. with the

relationship/ratio

G.= vG.. (2.49)

This formula is conveniently represented also in the form
(4\

a.,(a/c.W) -30O -.04(Z,'cx). (2.49a)

Key: (1). G/cm.

The gradients of magnetic quadrupoles in the initial part of the
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proton linear accelerator have values on the order of 5000 G/cm. Let

A=0.04. Then electrostatic is quadrupole, that replaces magnetic, it

must have a gradient G=60000 V/cmz. With a radius of aperture a=l

cm this gradient is provided, if the potential of each electrode

relative to the earth/ground is V=30 kV, and the stress/voltage

between the adjacent electrodes 2V=60 kV. Quadrupole lenses, placed

within drift tubes, small sizes/dimensions. The guarantee of the

necessary gradient of magnetic field in such lenses does not cause

special difficulties. Meanwhile to ensure dielectric strength (on 60

kV) of construction/dlesign within the tube is very difficult. In the

accelerator with drift tubes product AG, they usually keep constant.
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Therefore field gradients in the magnetic quadrupoles decrease with

an increase in the energy of particles. But the field gradient of

electrostatic quadrupoles in this case does not depend from the

energy of particles and remains high to the end/lead of the linear

accelerator. Therefore electrostatic quadrupoles in the ',near

accelerators with drift tubes are not utilized. In other

constructions/designs electrostatic quadrupoles can prove to be more

preferable than magnetic ones, since they have some advantages in

comparison with the magnetic quadrupoles. The constructions/designs

of electrostatic lenses are simpler, in them to more easily
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maintain/withstand the necessary form of electrodes, there is no

dissipation of power. Furthermore, the electrostatic lenses, placed

within the vacuum channels, do not worsen/impair evacuation.

Let us design equation (2.39) on the coordinate axes and will

substitute the appropriate values of forces (2.40), (2.46), (2.47).

We will obtain the following equations of motion:

dt  - B.(x, y, z) e E e
moy 2moYJ z "70z3 LIX

jt- B. (x, y. z) o' ( ..7O0 2 O'.. LZM') 3 Lyll

=2 e E , (z, t)- " O
dt
i  

- moy ' Tz

Latter/last equation - this is the equation of longitudinal

vibrations, in detail examined above in variable/alternating V.PV

and disregarding by the proper field of particles. In the general

case in equations (2.50) the variable/alternating are not divided,

since potential U depends on three coordinates. In this chapter let

us disregard/neglect the collective interactions of particles, after

placing U(x, y, z)70. Since on above (see Chapter I) simplifying

assumption accepted the amplitude of accelerating field does not

depend on transverse coordinates, latter/last equation does not

contain x, y. We examined this equation independent of transverse

vibrations of particles. For each particle the equation of

longitudinal vibrations has certain solution of z=z(t), which can be

substituted in the first two equations. Then the equations of

transverse vibrations will not contain longitudinal coordinate. Thus,
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for the beam with the negligible density of space charge

variable/alternating in the equations of motion are divided: the

equations of transverse and longitudinal vibrations can be examined

independently. Hence, first of all, it follows that in accordance

with the theorem. Liouville must independently be retained the values

of phase volumes on plane it. ., and in four-dimensional space

X. * P X. P .

If we are restricted to linear approximations/approaches to

focusing fields, then the equations of transverse vibrations prove to

be linear, moreover variable/alternating in them are divided

dtx e G ! e E_
=-- G (t)x x : t

OZ12' M OY

Page 76.

In this case must remain invariant the phase volume for each of the

phase planes x, p, and y. py.

The coefficients of equations (2.51) depend on time. Coefficient

aE- is periodic with the period of the accelerating structure L.

Coefficient G is periodical with the period of focusing field S.

Ub , lly tne period of focusing field contains the integer of periods

of the accelerating structure. Subsequently we will consider that the
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relationship/ratio of periods indicated is fulfilled. Then the

equations of transverse vibrations (2.51) are reduced to the linear

equations with the periodic coefficients. It is convenient to switch

over to the dimensionless variable r, with which the period of

focusing field is equal to unity,

d =- dt. (2.52)

Producing the replacement of variable/alternating in equations

(2.51), let us rewrite them in the form

d2 x
(2.53)

-Q, (T j 0.

Functions Qx, Q, satisfy periodicity condition

Q(T-1)= Q(T). (2.54k

Into equations (2.53) are introduced the designations

Q. (r) = Q (t) - Q. (r); (2.55)Q. (T) = - Qp (T) - Q. (T).

where Q0 - function, determined by focusing fields. Disregarding the

scatter of longitudinal velocities, we have
Q,(.r)= S1e (T) (2.56)

where p, - the longitudinal component of the impulse/momentum/pulse

of synchronous particle; Q.- function, which describes the

defocusing action of accelerating field
eS' dE1

Q. (,) _ as, -. .(). (2.57)

Before passing to the analysis of equations (2.53), let us

L"..
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examine the focusing action of short lenses. According to equation

(2.50), the pa,'ticle motion, which lies at plane XOZ, in the field of

lens, free from accelerating fields and space charge, is described by

the equation
B , 2.58)

Page 77.

Refraction of trajectory in the lens is equal

= - \ Bx. z)dz 2.191

Let us name/call the lens of thin, if it is possible to consider that

at the length of lens the particle displacement does not manage to

change. The focusing action of thin lens is completely determined by

refraction of trajectory (2.59). Substituting series/row (2.30) into

integral (2.59), for the thin lens we obtain

..6.. __ A ( z ) d z . ( 2 6 0 )
m O j- 0-

Let us examine the integrals, entering sum (2.60). B,(k) - function,

conjugated/combined with function A.j(z):

+W
A,,j (z) =iB,,,j (k ) e' : dk:

-,

Then
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I + ~~,j (z) dz 0

From the expressions for coefficients (m Esee expression (2.30) and

the following after it] can be obtained
B,, (k) k: - a... 2(k). 2.6!

Since refraction of trajectory (2.60) is limited, from

relationship/ratio (2.61) it follows that coefficient Bn0(f),

proportional
B,0 (0) -'.Iim k1'--2a,,,, -(k)

k-0

is a value final. But in this case with j0

Bmj (0) lim k'1" k 2' .a4 _ (k) _O.

Thus, the contribution to sum (2.60) give only the terms, which

contain coefficients Amo(z). Page 78.

S 2.3. Equations of Mathieu-Hill and function of Floquet.

Particle trajectories in the strong-focusing channel are the

solutions of equations (2.53). Linear equations of such type with the

periodic coefficients are called the equations of Mathieu-Hill [593.

The equations of Mathieu-Hill are obtained during the analysis of

particle motion in any linear periodic structures. In particular, by

the equations of Mathieu-Hill are described particle trajectories not

only in the strong-focusing channels, but also in any long channels,
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which consist of the set of discrete/digital lenses. The

investigation of the parametric resonances, connected with periodic

modulation of the parameters of dynamic system, also always reduces

to these equations. Since any accelerators, including linear, are in

this or another form periodic structures, equations of type (2.53)

have fundamental value/significance in the theory of accelerators.

Therefore it is considered advisable for simplification in the

following presentation to stop at the character of the solutions of

the equations of Mathieu-Hill.

In equations (2.53) the variable/alternating are divided. Let us

examine one of these equations, after dropping/omitting the indices

,x Q () X= 0. (2.62)

First let us assume that Q(7) - the arbitrary function of time. u(r),

v(r) - two solutions of equation (2.62), which correspond to

different initial conditions. The Wronskian (Wronskian determinant)

pairs of the solutions of the linear equation of the second order,

which does not contain first-order derivative, there is, value, not

depending on the time:
u (,) u (r)

W d, dconst. (2.63)

So that two arbitrary solutions would be linearly independent, it is

necessary and sufficient so that the Wronskian determinant of these

solutions would differ from zero. Let us accept for future reference
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the following condition for the standardization of the real

fundamental pair of the solutions:
dv du
dT, 7-- (2.64)

In particular, this condition for standardization satisfies the pair

of solutions with the initial conditions
du do

u(O)= ; du(0)= 0; v(O)= O; du (0)= 1

Let us take as the fundamental pair two linearly independent complex

solutions

X(T)= u,(T)+ivi (T);
X2(T) = 2(T) + it (T).

It is expressed the second pair of the linearly independent real

solutions through the first

v2 = a21u, a=v.

Page 79.

Composing the Wronskian determinant of complex solutions, we obtain

Xi Xz
W= dX1 dX2

T T

=la,: -a ,--- i (u--a,)l. du , a1

Since functions x, 7: are linearly independent, binomials a,,+a,, and

a,,-a,, simultaneously do not become zero. If x,, Xz are selected

complex conjugate, then a,,-a,,-O; a,,--a,,-l. Hence, under the

condition standardization for real fundamental pairs (2.64), for the
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complex conjugate solutions we have

d" Y* =1-2i. (2.65

Let us represent the complex conjugate fundamental pair of solutions

in the exponential form
I X()=oT~e ; *(r =a~xe -''' (2.6o)

Then any real solution takes the form

X (T)= ax() + a'*(T) = 4a ()cosI( ), -H, 2.67,

where A, e - arbitrary real constants, which depend on the initial

conditions
1Ae".

Substituting expressions (2.66) into the condition for

standardization (2.65), we obtain following common

connection/communication between rate of change in the phase of

solution and modulus/module of the solution:

d* = (2.68)

Further, if we substitute solution in the form (2.66) into initial

equation (2.62) and to consider dependence (2.68), then we will

obtain the equation which satisfies the modulus/module of any complex

solution:
- () -L.=0. (2.69)

The general/common/total properties of the solutions of the linear

second order equation indicated with the coefficient, which are the

arbitrary function of time, play important role during the

calculation of the focusing of intense beams.
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Let us assume now that function Q(r) - is periodic (2.54). In

principle any pair of the linearly independent solutions of the

equation of Mathieu-Hill can be selected as the fundamental.

Page 80.

Remaining solutions are the linear combination of the chosen

characteristic functions. However, not any selection of

characteristic functions is equally convenient. It is possible to

show that there is always such pair of fundamental solutions of the

equation of Mathieu-Hill, through which all remaining solutions are

expressed by the simplest form. For the explanation let us examine

the trivial case when the coefficient of equation (2.62) is constant:
d~x
d2 - 3--- :x = 0. (2.70)

As the complex conjugate pair of the solutions of this equation are

always taken the functions
X( )ei"; X* (r) =e- ', .

Then real solution is represented in the form

x()=Acos(oc+ 8), (2.71)

from which evident that any solution of equation (2.70) - harmonic

function with the constant amplitude and the phase, which linearly

depends on the time. The normalized characteristic functions take the

Lm
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form

x = - e1 wl v* - - i

Substantially the less successful selection of characteristic

functions would be, for example, such

.h -

I* z -  - e ,

In this case, as it is easy to show, real solutions (2.67) take the

form .4
X (T)= I I - 8 cos, W cos 4 (T) . '(2.72)

:3u

moreover

d I-,-cosn

Amplitude and phase of solution (2.72) prove to be the complex

functions of time, moreover to be dismantled/selected at the fact

that function (2.72) coincides with function (2.71), is difficult. If

we deal concerning the equation of harmonic oscillator (2.70), then

the amplitude of solution only then is constant, when the phase of

solution - linear function of time. However, for the equation of

Mathieu-Hill in the general case the selection of the

adequate/approaching pair of fundamental solutions is not so trivial.

Let us examine the arbitrary linearly independent pair of the

complex solutions of the equation of Mathieu-Hill Xt(T) and xz( ).
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Page 81.

In view of the invariance of equation (2.62) relative to the

conversion of the independent variable r'=r+l, in any assigned

interval of function X, h,-k2 (T -- 1) they will also be the solutions

of equation (2.62):

x, (T - I) aI (T) - a ,(T):

X2 ( .,t ( 1) i X(r) -a--X, (T).

where aj - constant complex numbers corresponding to this,

arbitrarily selected fundamental pair of complex functions. We form

certain new complex solution of equation (2.62)

( A AX, (,r) -; BX2 (T).

The function

taking into account conversion (2.73) can be represented in the form

F (T + I) = (Aa, - Ba,) X, (T) - - (Aa,2 - Bar2) X2 (T).

Let us select conversion factors A, B so that would be satisfied the

identity
S(T + 1) = A (), (2.74i

where X - a constant value, condition (2.74) is satisfied, if

conversion factors satisfy the equations

Aa1 + Ba1 = A;
Aa12 + Ba= = XB. (2.75)

The system of linear homogeneous equations (2.75) has nontrivial
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solutions with

all-i a2,
a1 .. a..--;. = O

Thus, X - this is the square root equation

Let us show that the combinations of values n. forming the

coefficients of quadratic equation (2.76), do not depend on the

selection of fundamental solutions x,, X2. Let us introduce for the

decrease of recordings the following designations for the columns and

the matrices/dies

=a-- (an, at,:) . P.7

) ; 2.7~

(E) (1 0)

end section.
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Page 82.

The determinant of matrix/die (a) let us designate (a). Then linear

transformation (2.73) is written in the matrix form in the form

= (a) (x),, (2.73a)

while equation (2.76) is reduced to the form

(a) - (E) = 0. (2.76a)

Let us examine now certain other pair of complex fundamental

solutions XI(T), X2 (T).

We have

(X,., = (b) (x),.

New solutions can be expressed through the old ones

(., = (C) (X).

By hence consecutive substitution we obtain

(x),, = (c) (a) (c)-I (x),,
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where (c)-' - matrix/die, to reciprocal matrix (c):

(C) (0)-1 ( )

Thus,

(b) (c) (a) (c)-. (2.78)

if we as the fundamental solutions select x, and -, the equation for

X would take the form

Let us substitute into the latter/last equality expression for the

matrix/die (b) (2.78). Taking into account the identity

(E) = (c) (E) (c)'

we will obtain

(b)- X (E) (c) ((a)- X (E)) (c)-I i.

Since the determinant of matrix product is equal to the product of

the determinants of these matrices/dies, then

I (b) - X, (E)! = I (a) --X (E) 1. (2.79)

Both polynomials (2.79) have identical roots X,, X, and, therefore,

the coefficients of these polynomials coincide:

-(X, + 4) = alt +an - b, + b=;
x~== (a)',=!b i
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Page 83.

Equation (2.76) does not depend on the selection of characteristic

functions and it is uniquely determined by initial differential

equation (2.62). To each root of characteristic equation (2.76)

corresponds its, specific for this pair of characteristic functions,

ratio A/B. We will obtain two functions, which satisfy condition

(2.74):

(f (T) = AIX, () - BX2 (T); 12.80)
Wz (T) A.4X (TI) - Bx. (T).

moreover

k,(t -l) I (T); ( t )=). :t (2.81)

According to expression (2.75),

B1 = )I-al ; A: = ___ (2.82)
4X a21  82 u( )

In this case it is assumed that characteristic equation (2.76) does

not have multiple roots. By equalities (2.80) of function Q,(r),

v,(r) they are determined with an accuracy to arbitrary complex

factors. Let us compose the Wronskian determinant of these functions.

Utilizing conversion (2.80), we obtain

At TP2 A, B, Xt X2

jd? dq-2 A.B, dXI d_:-d'r dT - " d
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Let us substitute into the determinant, comprised of the conversion

factors, relations (2.82). This it gives

L1 ,
A IB&-,4,B, = !d=- ( _-,. (2. (S3)

If none of the functions Q., Q. is equal identically :o zero (A,-C,

A2 0), then determinants (2.83) it is different from zero. Functions

o, o, are linearly independent. It is obvious that other functions,

satisfying the assigned equation of Mathieu-Hill, to condition

(2.74), and linearly independent from o,, Q, there does not exist.

Actually/really, the existence of the third function contradicts so

that the system of linear equations (2.75) has only two series/rows

of the nontrivial solutions A/B.

The absolute term of characteristic equation (2.76) is

determined from the condition of the constancy of Wronskian

determinant. W(r), W(r+l) - the Wronskian determinants of functions

XtXi at the moments of time r and T+l. Let us substitute into

determinant W(r+l) expressions (2.73). It is easy to ascertain that

W(T+1) (a); W r).

Since W(r)=const,

a, a12 =1. (2.84)a:, a-~
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On the assigned equation of Mathieu-Hill (2.62) depends only the

coefficient of characteristic equation with the first degree X. Let

us introduce the following designation for this coefficient

a,- a-. - 2ch 1. (2.t45

Page 84.

The sum of diagonal matrix elements is called trace, or bore-hole,

this matrix/die

ch = Sp (a). (2.85a)

Characteristic equation (2.76) is simplified

V -2.ch I+I-0. (2.86)

Since the coefficients of characteristic equation do not depend on

the selection of characteristic functions, it is possible, without

disrupting generality, to select the complex conjugate pair of

solutions X,(T) X (T); X2 (T) = X' (T). If

X (T + I) =ax (T) +azx" (T),
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then, obviously,

X" (T - 1) = a*x (T) -7a,,X" (T).

In this case az=a ,

and

ch I - - (a,, - a,,).

Value chi as the sum of two complex conjugate numbers, is real.

Consequently, the roots of characteristic equation can be only real

or only complex conjugate.

According to expression (2.86), X1X,=1,

or

X; X2= . (2.87)

Thus, there is an only pair of the linearly independent solutions of

the equation of Mathieu-Hill, which satisfies the conditions

q,(T-)=X 1 (T); 92 (+±I)= 92(). (2.88)

This confirmation is called the Floquet theorem. The fundamental pair

of the solutions of the equation of Mathieu-Hill, which satisfies

conditions (2.88), is called Floquet's functions. Floquet's functions

exactly are that chosen pair of the fundamental solutions, with the
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aid of which most simply are expressed any other solutions of the

equation of Mathieu-Hill. In particular, functions e±'1 are to

Floquet's function the equation of harmonic oscillator (2.70).

However, the value/significance of Floquet's functions for the

channels, which have periodic structure, is much wider. Subsequently

let us show that with the optimum focusing envelope of particles of

particles in the long channel is described by Floquet functions of

this channel.

Page 85.

Floquet's functions in the general case are complex. If

moduli/modules of both Floquet's functions are limited in the time,

then the general solution of the equation of Mathieu-Hill, since it

is the linear combination of Floquet's functions, it is stable. But

if the modulus/module at least of one function of Floquet unlimitedly

grows/rises in the course of time, then the general solution is

unstable. From conditions (2.88) it follows

9,(' - 1) .- X
.(,-I) : x ()

V ~cr)

Hence it is apparent that the general solution is always stable, if

x= i. But if .'1,then one of the moduli/modules unlimitedly

grows/rises and the general solution is unstable. According to the
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condition the cases of multiple roots let us exclude. Let the roots

of characteristic equation be real; then IXl and the general solution

is unstable. When the roots of characteristic equation are complex

conjugated, then, according to expression (2.87), IXpl and the general

solution is stable.

The roots of characteristic equation (2.86) take the form

X=chl ± l/chsl--1 =e±'. (2.89)

Parameter I is called the characteristic index of the equation of

Mathieu-Hill. Let

I k + i&. (2.90)

Then

ch (k + i1L) = ch k cos R - i sh k sin L.

Since chi - value real, are possible only the two cases.

1) u-+-n; 1=k+-inw, where n - any integers.

In the case

1,(- )" e"; X2 (-- )" e - h.
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The general solution is unstable: IXI#l. Depending on the values of

the parameters, which are determining function Q(r), the equation has

an infinite set of unstable regions to each of which corresponds the

specific value/significance n. To real roots it corresponds

ch/ >1.

2) k - O: 1 iu.

The general solution is stable: =et'-" L =I. The parameter w can be

represented in the form R=;±n, where O<&<t. Then

Page 86.

To each value/significance n corresponds the specific range of change

in the parameters of function Q(r), for which the general solution is

stable. Stability condition is the inequality

chL< 1. (2.91)

When both cases occur simultaneously:

I ± inn,

then ch1 =+-l and characteristic equation (2.86) possesses multiple

root. The values of characteristic index indicated answer stability

limits.
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Let us present Floquet's function as follows

q', (,) = e 'F, (r); q. () = e-" F2 (r). (2.92)

We have

(r,(T - 1) =e'' F, (T - ).

At the same time, according to expression (2.88),

p 1 (r-I) q r) = ele",F, (r).

Hence

F, + 1) = F,(r).

Of functions F,, F2 - are periodic, with the period Ar=l, i.e., with

the period of function Q(7).

Let us examine the solutions of the equation of Mathieu-Hill in

the unstable regions. Substituting in equalities (2.92) expression

for t (2.90), we obtain

q, (T) =- eh"U, (T); 9)2 () - e-hTU: (T). (2.93)

where

U, (,r) - e*t"IF, (T);
U2 (r) - e"M'F2 (T). (2.94)
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Functions (2.94) - periodic. The frequency of these functions with

even n coincides with the period of a function Q(T), and with odd n

it is twice lower. Actually/really, cyclic period of a function

F,(r). F2 (r) is 27r; cyclic period of a function e" ' is equal to n7r.

Therefore with even n in the period Ar=l is placed the integer of

periods of function en-,T. With odd n the integer of periods of

function e' = is placed only in the interval Ar=2. As it is possible

to show, in the unstable region always it is possible to select the

arbitrary complex factors of conversion (2.80) so that Floquet's

functions (2.93) would be the real functions of time. Let us

introduce instead of functions (2.94) other two real functions with

the aid of the relationships/ratios:

U2 (T) = Q() sin ( ).

Then the general real solution in the unstable region will take the

form

x (,) =Q(,) jAeh' cos0 () +Be-kv sintD (r)). (2.95)

Page 87.

If initial conditions correspond A=0, then particular solution is

stable. In all remaining cases particular solutions are unstable.

Function p(r) is periodic with the period 47-i or A7-2 depending on
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parity n. Phase change F in the period of solution &7=l or 47=2

composes integer 2r. The increment of oscillation buildup of the

unstable part of solution (2.95) is a constant value and is

determined by the characteristic index of the equation of

Mathieu-Hill. Solutions in the unstable region are important during

the investigation of parametric resonances.

During the analysis of transverse vibrations basic interest they

will present solutions in the stable regions, or, is more precise, in

the first stability region, which corresponds n=0. In the stable

region Floquet's functions always can be selected complex conjugate.

In fact, let xt = x;X2 = X. In this case an = u . Utilizing expression

(2.82) instead of general/common/total conversion (2.80), we obtain

(p2 11 x X

In the stable region , so that bracketed expressions are complex

conjugated. Selecting B=A-, we have

q, (c) = Q (v) e* 10 ; q () = e () e-' 1 . (2.96)

In accordance with the Floquet theorem

Q (T + 1) e'0(1+') = e (T) eib(T).

Hence

W(T + I)-( ) .(2.97)
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The modulus/module of Floquet's function in the stable region - this

is the periodic function of time with the period Ar=l. The phase of

Floquet's function in each period Ar=2 grows/rises by the constant

value g, which does not depend on the reference point of period. Any

real solution of the equation of Mathieu-Hill in the stable region

can be expressed through phase and modulus/module of Floquet's

functions

x ()= AQ(T)COS[(D(T)+4 I. (2.96)

Thus, if the phase of solution is Floquet's phase, then the amplitude

of solution - periodic function of time with the period of a change

in the coefficient of equation. Equalities (2.95),. (2.98) - the

simplest expressions fir the general solutions of the equation of

Mathieu-Hill. The dependence of modulus/module and phase of Floquet

on the time is given in Fig. 2.10.

Page 88.

According to the general condition for the standardization of complex

conjugate solutions (2.65),

p- - 2i. (2.
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Floquet's functions are completely determined, if is calculated the

modulus/module of function, since in accordance with expression

(2.68)

(D (v)= -d.T2 1o
' Q2  () 10

0

Since the modulus/module of any complex solution satisfies equation

(2.69), then the modulus/module of Floquet's function is the periodic

solution of this equation. Is given below the method, which makes it

possible in certain cases to immediately find initial conditions for

the periodic solution. But if initial conditions for the periodic

solution cannot be determined sufficiently simply, then equation

(2.69) is necessary to decide in electronic computer the method of

successive approximations, attaining the coincidence of values of

modulus/module and its first-order derivative at both ends/leads of

the period.

Expression (2.98) describes, in particular, the trajectory of

individual particle in the strong-focusing channel. In this case the

parameter u - phase change of transverse vibrations in one period of

focusing field. The instantaneous frequency of transverse vibrations

let us name/call rate of change in Floquet's phase:

do(2.101)

4h M di
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Let T.- time, for which the particle flies one period of the

focusing field:

T S (2.102)

Then

1= r "(2. 103)



DOC = 82105202 PAGE JI

zA"

I I I I

Fig. 2.10.

Page 89.

Let us introduce also the concept of the medium frequency of

transverse vibrations in the period

t+T (

( I t( )dt. (2.104)

When T,=const instantaneous frequency proves to be the periodic

function of time, and medium frequency - by a constant value.

According to expressions (2.97), (2.100),

d+1

Hence

Frmalt(.1(2. inpc

From equality (2.106) it is evident that the parameter A can be also
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defined as the average (cyclic) frequency of transverse vibrations to

scale of time r.

Let us fix the moment/torque of time 70 and will examine

discrete/digital points to the trajectories, distant behind each

other to the integer of periods. After the n periods

Q(T 0 -n) =Q(To):
D (xo ---n) =D(T,) -4n.

Discrete/digital points lie/rest on the sinusoid

x (vo--n) = A Q(,o)cosJ pn - (D(,c) - 3 , (2.107)

frequency of which is equal to the medium frequency of transverse

vibrations. The amplitude of sinusoid in expression (2.107) depends

on the chosen phase of period r0 . Amplitude has the greatest

value/significance, if point r0 corresponds to the maximum of

Floquet's modulus/module, and the smallest value/significance, if r.

it answers the minimum. Particle trajectory is placed between these

two extreme sinusoids. From the qualitative considerations about the

work of quadrupole lenses it is obvious that the maximum of Floquet's

modulus/module falls in the focusing section of period, and the

minimum - to that defocusing. The parameters of the strong-focusing

channel are usually selected by such that the stability of

trajectories would be provided in first region (n-0). In this case

the medium frequency of transverse vibrations considerably lower than
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repetition frequency of the focusing structure and particle

trajectory is the "slow" sinusoid, to which are superimposed "rapid"

oscillations with the period of the focusing field (see Fig. 2.5).

Page 90.

Some goals, connected with the parametric excitation of forced

oscillations, by modulation of frequency, by the oscillations of the

membranes/diaphragms, and others can be brought under the specific

simplifying assumptions to the particular form of the equation of

Mathieu-Hill

d-L + '(a-2qsin2T)x =0, (2. 108)dT2

to called equation Mathieu. The coefficient of the equation of

Mathieu is the harmonic function of the independent variable. The

form of writing of the equation of Mathieu (2.108) is selected here

in such a way as to retain the designations of coefficients, accepted

in book [59). Equation (2.108) describes also particle trajectories

in the strong-focusing channel, if the gradients of focusing field

are distributed along the axis according to sinusoidal law £60). The

solutions of the equation of Mathieu are studied most fully. Fig.

2.11 shows the regions, which correspond to the solutions of the

equation of Mathieu with different character of stability [59]. The

regions of stable solutions are shaded. In the unstable regions
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dotted line noted some lines of the equal values k. Unstable regions

are arranged/'ocated about values of a=n 2. Since the cyclic

modulation frequency of the parameter in equation (2.108) is equal to

2r, therefore, parametric excitation takes place when the average

frequency of the oscillating system is close to half the integral

values of the frequency of the parametric effect. This condition of

parametric resonance is correct for the general case of the equation

of Mathieu- Hill.

-AA
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Fig. 2.11.

Page 91.

S2.4.. Beam of particles in the strong-focusing channel.

During the identification of the parameters of the

strong-focusing channel must be first of all provided the stability

of trajectories. For all further calculations of the focusing

properties of channel are most interesting not individual particle

trajectories, but envelope of particles, since precisely they

determine the sizes/dimensions of the focused beam at each point of

channel. It is obvious that the sizes/dimensions of beam in the
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channel must be connected with the acting focusing forces and with

the value of the phase volume of beam. The behavior of beam in the

channel depends on initial entrance conditions. Therefore direct

problem of calculation consists in the determination envelope of

particles from the initial conditions in the assigned focusing

fields. Of no less significance is the inverse problem which is

called the goal of the agreement: to determine initial conditions,

with which the beam in the channel will have assigned optimum

envelopes. Speaking about the initial conditions for the beam, we

have in mind size/dimension and inclination/slope of envelope in each

of the transverse planes or other values, with them unambiguously

connected.

The phase volume of beam can be measured by different methods.

One of the possible methods consists of the following: with the aid

of the eyelet in the diaphragm they cut out the part of the beam,

which corresponds to some values of transverse coordinates, and

determine - on the disagreement of particles in drift space after the

diaphragm - the scatter of path inclinations in the cut out part of

the beam. If we consecutively/serially move the opening/aperture of

diaphragm over entire beam section, then it is possible thus to find

complete four-dimensional phase volume and distribution of phase

density in it [61, 62].
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Since into the equations of transverse vibrations is introduced

the dimensionless independent variable r, it is convenient to use

phase plane with the coordinate axes x, dx/d7. The derivative dx/dr

is connected with the path inclination with the relationship/ratio

dX = S -- x (2.10)
d'x- dx

Let be known the projection of the transverse phase volunme of beam on

plane x, dx/dr and this projection is limited by ellipse (Fig. 2.12)

(dx\2 dx
-2cx-1 210ax2 + b j d=r
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Fig. 2.12.

Page 92.

Designations for the semi-axes and the angle of the slope of ellipse

are clear from Fig. 2.12. The area, occupied with the projection of

phase volume, let us designate rF0 , where

Fo=MN (2.111)

there is a product of the semi-axes of ellipse (2.110). To avoid

confusion let us name/call value F0 the reduced volume of beam. If E

- emittance of beam (2.3), then, according to equations (2.109),

(2.111),

F0 =SE. (2.112)

Combining equalities (2.4) and (2.112), we obtain also

connection/communication between the transverse phase volume of beam

(2.2) and reduced volume (2.111)

V, V. cT 'o. (2.1131
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Since transverse phase volume - value invariant, then in the linear

accelerators when TO=const reduced volume in the nonrelativistic

approximation/approach is also invariant. It is easy to show,

converting equation (2.110) to the canonical form, that the reduced

volume is connected with the coefficients of equation (2.110) with

the equality

Fo= - (2.114)
V ab-c

Let us return now to the equation of individual trajectory,

expressed through modulus/module and phase of the arbitrary pair of

complex conjugate fundamental solutions (2.67),

x=Aacos(*+O);
dX do 0_A.

-a . o s o(V+). (2.115)

Expressions (2.115) are the equations of phase particle trajectory in

the parametric form. Modulus/module and phase of fundamental solution

are assumed the assigned functions of the parameter of equations 7.

Values A and @ depend only on initial conditions and are constants

of motion. Eliminating from equations (2.115) trigonometric

functions, we obtain expression for constant of motion A'

A'=a X 2 X)+ x 
-

- . (2.116)

cJ'd- dv ( -a - IIII
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To each value/significance of constant of motion A2 at current time r

corresponds on plane x, dx/dr certain ellipse.

Page 93.

Let us select initial conditions for the modulus/module a(O), do/dr

(0) and constant value A in such a way that ellipse (2.116) would

coincide at zero time with the boundary of phase volume (2.110)

- -- , --
.4 2 . VT ,

02

.7 b; (2.117)

Sdao
-- C.

Then to all particles, that lie on the boundary of phase volume, will

correspond one and the same value/significance of constant of motion

A and at any following moment of time ellipse (2.116) will coincide

with the boundary of phase volume. After substituting expressions

(2.117) into equality (2.114), we will obtain

A- /4 (2.118)

Hence

o o -d-o acF 0
E s (2.1 ()) fbe (2 I 19)

Expressions (2.119) can be represented also in other form, if we
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replace the coefficients of equation (2.110) with semi-axes and by

the inclination/slope of the boundary ellipse (see Fig. 2.12):

Al Na (0)= c/os" a4-+ V sin 2 a;

(2.119a)

da ( ," ( N ' sin 2a.

On envelope of particles lie/rest the particles, which have at the

given moment/torque maximum misalignment. Since ellipse (2.116) with

satisfaction of conditions (2.118), (2.119) always coincides with the

boundary of phase volume, we are guaranteed, that to any

value/significance of phase 8 corresponds the representative point

of any particle of beam, which lies on the boundary. For the given

moment of time always will be located the particle with phase H. with

which cos(l--)=1. Hence, according to expressions (2.115), (2.118),

it follows that envelope of particles takes the form

r (,)-VF r-) (2.120)

Thus, envelope of particles in each of the transverse planes is

proportional to the modulus/module of certain complex solution of

linear equations of motion. Proportionality factor with the

standardized/normalized modulus/module - this square root of the

reduced volume of beam. The corresponding modulus/module is the

solution of equation (2.69) under initial conditions (2.119a),

determined by form and location of the ellipse, which limits the

projection of phase volume.
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Introducing expression (2.120) into formulas (2.69), (2.119a) we

directly obtain equation and initial conditions for the envelope
2FxdT2 C () r- =0

r, (0) -Mcos2 a,,+ . sin a.,; (2.121)

= 2rx (0) x-s) i.

For plane YOZ occur the same equations with the replacement of index.

If the phase volume of beam has finite quantity (F0,0), then

equation for the envelope (2.121) does not coincide with the equation

of trajectory (2.53). Consequently, in the beam with the final phase

volume there is no particles whose trajectory would coincide with the

envelope. "boundary particle" can exist only in the beams with the

zero phase volume. As is known, hypothesis about the existence of

boundary particle brings to so-called Brillouin flows [63]. Hence it

is apparent that the Brillouin flow corresponds to particle motion in

the beam where there is no disordered scatter of velocities [64-66).

Let us note that when deriving the equations (2.121) nowhere was

utilized the assumption about the periodicity of functions Q(,).(t(.

This fact has the vital importance in the examination of beams with

the noticeable space charge.
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Let us assume that the phase volume of beam by the previous

optic/optics is converted to the input in such a way that initial

conditions (2.119a) would answer the periodic solution of equation

for modulus/module (2.69). Then envelope of particles (2.120) is

proportional to the modulus/module of Floquet's function

r(r)=V oQ(T). (2.122)

Envelope of particles in each of the transverse planes prove to be

periodic functions with the period, equal to the period of focusing

field. This beam is called matched with the channel. The ellipses,

which limit the projections of the phase volume of matched beam, let

us name/call Floquet's ellipses. The coefficients of equation

(2.110), which is determining Floquet's ellipse, these are the

periodic functions of the time

-b Q2;  (2.123)
FO0
I dQ

C=- - --.

Page 95.

To each phase of the period of focusing field 0T0I corresponds

its ellipse of Floquet, unambiguously connected with the parameters
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of the focusing channel p(r0 ), dq/dT(7,). Floquet's ellipse

tests/experiences the identity transformation through the period of

focusing field. The most characteristic phases of period - points at

which the modulus/module of Floquet's function has an extremum. At

these points first-order derivative of modulus/module is equal to

zero, so that the coordinate axes of phase plane coincide with the

axes of Floquet's ellipse. At the point of the maximum of Floquet's

modulus/module the envelope has maximum value, and the instantaneous

frequency of transverse vibrations (2.103) is minimum. Fig. 2.13

schematically presents the envelopes of matched beam in two mutually

perpendicular planes, beam sections and ellipses of Floquet at some

points of period. At points the II and IV moduli/modules of Floquet's

functions have an extremum.

Let us substitute into equality (2.122) the instantaneous

frequency of transverse vibrations (2.103)

r T) F0 (2.124)
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Fig. 2.13.
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The envelope of matched beam at each point of period is inversely

propoitional to square root from the instantaneous value/significance

of frequency. The same relationship/ratio remains valid, if

instantaneous frequency in the assigned phase of period adiabatically

changes along the axis of channel. Replacing in expression (2.124)

the reduced volume of beam with the value of transverse phase volume

(2.113), we obtain the following connection/communication between the
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instantaneous frequency, the semi-axis of section and the phase

volume of the beam

V =-U~ rt;(2.125)
C

Channel capacity let us name/call a maximally possible phase volume

of the matched beam, still passed by channel. Generally, the

fluctuation of particles in the channel - this is the sum of the free

oscillations, which depend on initial conditions and determined for

the ideal channel, and forced oscillations, caused by errors focusing

in the system. Let a - a radius of that part of the aperture which is

abstracted/removed under the free fluctuations of particles. The

semi-axis of section reaches maximum value/significance = r-rC

when 0-= a). Matched beam is passed without the losses through the

channel, if ruafc<Na. Hence we obtain formula for the channel

capacity:

V. =-y,.Ha2. (2.126)

With the given aperture of channel and energy of particles the

channel capacity is the higher, the greater the minimum instantaneous

value/significance of the frequency of transverse vibrations in the

period of focusing field.

Channel capacity they frequently prefer to characterize with the

value of acceptance, equal maximum to the permissible emittance of
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the matched beam, still passed by channel. The acceptance of channel

is connected with the capacity with the relationship/ratio, analogous

to expression (2.4):

A= V - (2.127)

After using express..:,n (2.103), let us represent capacity and

acceptance of channel in the form

VK = Y a2;cToe2
CTQAKC

A = TI as. (2.128)

Hence it follows that in the linear accelerators when T0 =cons- the

channel capacity in the nonrelativistic approximation/approach i.-

invariant, and in the relativistic approximation/approach it slowly

increases proportional to Lorenz's factor. The acceptance of channel

in the linear accelerators when T4,= const depends substantially on

the energy of particles and is inconvenient as the characteristics of

the focusing system of accelerator.

Page 97.

In the circular accelerators is always kept constant the length of

the period of focusing field S = vT, so that acceptance does not

depend on energy of particles. Therefore in the theory of the

circular accelerators they prefer to use the concept of the
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acceptance of channel and respectively by the emittance of beam.

Let us assume the transverse phase volume of beam at the

entrance of the strong-focusing channel is limited by the ellipse,

which does not coincide with Floquet's ellipse the beginning of

channel. If they are known to Floquet's function for this channel,

then the envelope of unmatched beam can be found without the

integration of equation (2.69). Let us examine certain complex

solution of equation of motion whose modulus/module the unknown

function a(r),

X ()= aei* = c (T)+ c. (0), (2.129)

where c,, c, - complex constants:

c,=CteiY; c-=C2eiVs. (2.130)

Since function x(v) is determined with an accuracy to constant phase,

we can assume 7,-7; 7,-0. Moduli/modules C, and C, are connected with

the the identical standardization of all complex conjugate solutions

of equation of motion. Since

_X aX0_l 0 cc -c ) a
dX dX (Ca1 -C2C)Y d

then

C"- C -1 (2.131)
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Further, substituting formulas (2.129), (2.130) in the expression for

the modulus/module

we obtain

V( ) Qz + C, -2CC, cos 120 [T). I (2.132)

Thus, the envelope of unmatched beam is the product of periodic

processes with two frequencies: with the repetition frequency of the

focusing structure and with a double frequency of transverse

vibrations of 2w, or on the average during the period of focusing

field -L If the relation of these frequencies is great, then the

envelope of unmatched beam has maximums in each period of structure

(Fig. 2.14). These maximums subsequently let us name/call the local

maximums of envelope. But if both frequencies are sufficiently close,

then in some periods of focusing field local maximums can be absent.

Page 98.

At those points of the channel where

cos(20+y)= ± I, (2.133)
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we have

c( , ) (C1 - C.) L (T)

Since C,>0; C2 >O, then C,-C,<C,+C 2 . From condition (2.131) it follows

that

C,-C 2> 1;
O<C-C< I.

Virtually both frequencies of envelope never are located in rational

sense; therefore in the sufficiently long channel to point (2.133) it

is necessary the maximum of Floquet's modulus/module. At this point

the envelope of unmatched beam will be greatest

o =.t (CI + C2) QUARC. (2.134)

The maximum of envelope (2.134) let us name/call principal maximum.

The local maximums of envelope oscillate, having approximately a

period, which corresponds to the double frequency of transverse

vibrations 2 IT®. The greatest values of local maximums in each period

of their oscillations are approximately equal to principal maximum.

Therefore latter/last maximum can be the adequate/approaching

practical criterion for evaluating the sizes/dimensions of unmatched

beam in the strong-focusing channel. From equality (2.134) it follows

that the principal maximum of the envelope of unmatched beam always

exceeds the maximum of the envelope of matched beam with the same

II i I III I I il 1h J
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value of transverse phase volume.

The obtained result has simple geometric interpretation. Since

discrete/digital points in the trajectory, distant for the period of

focusing field, lie/rest on sinusoid (2.107), it is obvious that the

phase trajectories of the representative points, examined/considered

through the period coincide with Floquet's ellipses. Let us describe

Floquet's ellipse around the phase volume of unmatched beam (Fig.

2.15). For the certainty let us examine the discrete/digital points,

which correspond the maximum of Floquet's modulus/module.
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Fig. 2.14. Fig. 2.15.

Page 99.

The phase volume of unmatched beam will rotate within the described

ellipse of Floquet, so that the semi-axis of section will fluctuate

with the double frequency of rotation. The maximum size of unmatched

beam proves to be by the same as the size/dimension of matched beam

with the phase volume, which corresponds to the area of the described

ellipse of Floquet. The area of the described ellipse of Floquet can

be named/called the effective phase volume of beam.

Let us determine the principal maximum of the envelope of

unmatched beam under the assigned initial conditions a(O), do/dr (0)

(2.119a) and with the assigned functions p(r), dp/dr(r).

Differentiating the square of expression (2.132) and assuming/setting

r-0, taking into account expressions (2.131), (2.132) we obtain three
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equations for definition three the unknowns Ct, C 2, 7:

2CC,.sin y= --d - =

C'- C2. 2C,C., co y -

) , (C, - c)' .(2.136)

Then system of equations (2.135) is reduced to the form

s i n y Ir "o Q d o
I . , - ) aTQ T 

-  =2 . 1371" . 1 I'-, -

s-- in', -- - - V.?

Eliminating 7 from equations (2.137), we obtain

tat- - ! = 0. (2. 138)

where

Q c, dQ , (2.139)C: - , _._- ._. --r- - T-,V ,-o

If beam is matched with the channel, then C-2 and k1=Z,=i. Under any

other initial conditions Z,>l; Z,<l. Principal maximum of the

unmatched beam

ra = / o c. (2.140)

The value of root t,>1 or unambiguously with it the connected value

of parameter C>2 can serve as the criterion of agreement.
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Let us assume that the matched beam must have at the entrance of

channel a crossover: dp/dr(O)=O. Further let us assume that the

unmatched beam has at the entrance parallel envelope, but the

semi-axes of section differ from those matched. Then

From equation (2.138) follows

(-) H G 0(0)>Q(0);

Key: (1). with.

Thus, for instance, maximum of unmatched beam exceeds the maximum of

matched beam two times, if o(O)-2p(O) or a(O)=l/2p(O). Agreement to

always more easily rate/estimate, if a beam has at the entrance of

channel crossover. Otherwise the goal substantially is complicated,

since besides the section it is necessary to measure the angles of

the slope of envelope.

Let the entrance of the strong-focusing channel enter the
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unmatched beam, which reaches in the channel of radius a, equal to

the maximum permissible value/significance of the amplitude of free

oscillations. Then, according to expressions (2.122), (2.140), the

maximum size of matched beam with the same transverse phase volume is

equal to

a
.4tc(orTi

It is hence easy to find the phase volume of the unmatched beam

V = I I

Thus, the greatest transverse phase volume of the unmatched beam

which can be passed through the focusing channel, is connected with

the channel capacity as follows

L. (2.141)

Consequently, the best beam focusing in the channel is reached

when beam is preliminarily prepared by the system of matching lenses.

For determining the matched initial conditions it is necessary to

know the phase volume of beam and function of Floquet of the channel

r(o)-VF g(0); -- (o) - V-f. -(0). (2.142)

Page 101.

Since values Fox. For during the conversions of phase volume remain
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constants, the goal of beam matching with the channel is reduced to

the transformation of four parameters of beam , a-, -I' or that

the same, 'f(, Al . ,,. u.. Therefore a minimum number of independent

parameters of the matching chain/network of lenses in the general

case must be equal to four.

S 2.5. Matrix method of calculation of Floquet's functions.

Above was explained the important role of Floquet's

modulus/module as the function, which describes the envelope of

matched beam in focusing channel [78]. The values of the

modulus/module of Floquet and his derivative at the entrance of

channel initially assign for the matched beam, which in the principle

gives the possibility to calculate the matching optic/optics before

the channel. Floquet's modulus/module uniquely determines the

instantaneous frequency of transverse vibrations of particles and,

therefore, channel capacity vith the assigned aperture. This makes it

possible to formulate the requirements, presented to the phase volume

of beam. But if the phase volume of beam is assigned, then Floquet's

modulus/module determines the maximum size of the matched or

unmatched beam in this channel. Of greatest interest are the values

of the modulus/module of Floquet and his derivative at the entrance

of channel, and also the value of Floquet's modulus/module at the

point of maximum.
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For calculating Floquet modulus and its derivative at any

assigned point of period it is convenient to utilize an apparatus of

matrix algebra [67]. let us divide the period of focusing field in

the sections, for each of which the particle motion is described by

its linear equations (accelerating gap, quadrupole lens, idle

gap/interval, etc.). Solution of equations of motion in each section,

determined under the arbitrary initial conditions, gives the

matrix/die of linear transformation for displacement and path

inclination from the beginning toward the end of the section.

Multiplying the matrices/dies of individual sections, we obtain the

complete matrix/die of period whose elements/cells are connected with

the values of Floquet functions and do not depend on the selection of

particular solutions. This makes it possible to avoid the basic

difficulty of calculating Floquet's modulus/module from nonlinear

equation (2.69), which consists in finding of initial conditions for

the periodic solution. The task of determining the matrices/dies is

simplified, if the fields of quadrupole lenses are approximated by

"square wave".

Let us examine the arbitrary real solution of equation of

motion, expressed through Floquet's functions [682:

x = bigI (,) +b 2 @).
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4

in the stable region the functions of Floquet and respectively

arbitrary constants are complex conjugated, while in the unstable

region - actual. Connection/communication between the values of

functions x, dx/dr at the moment of time r and the values of

arbitrary constantp can be presented in the matrix form

x ) q -- ( T1 F" ' ('2. 1431
J X = d(F-L dqf.
-T ,€ d'r a'-' t ,

Let us solve matrix equation (2.143) relative to the column of the

arbitrary constants

=b 4F I X (2.144)

If we now write equation (2.143) for the moment/torque of time r+1

and to replace the column of arbitrary constants with the right side

of equality (2.144), then we will obtain

T) (2.1451
(dx+ (T': T12  x (.45

where

T 1  T 2) T 2  IT ll 2  l(2 .1 4 6 )T2 dr dt T4\ d~T
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Let us assume r=n+7', where n - integer, and r' - any phase of

period, which lies within limits of O<'.l. Since the initial

equation of Mathieu-Hill is invariant relative to transformation

r=n+r', then with any n can be selected one and the same pair of

characteristic functions. Consequently, the matrix/die

T= -TI, Tt (2.147)

(T. TI-}

does not depend on n. Matrix elements (2.147) - the function of the

selected phase of period r. Matrix/die (2.147) is called the

matrix/die of the period of the focusing field, which begins from the

chosen phase r'. Determinant of matrix/die in the right side of

equation (2.143) - the '4ronskian determinant of Floquet's functions

W

(PI T2 .g

For the reciprocal matrix occurs the relationship/ratio

(PI 'V2

Page 103.
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According to expression (2.146),

W(T -I)

According to the theorem about the constancy of Wronskian determinant

T=1:

T 1 T:-T 2 T2  1. (2. i4,*

Let us expand/develop matrix product (2.146). Utilizing the Floquet

theorem (2.88), (2.89), we obtain

i -q2_ N

T.:= - 2. 7:, (F sh 1': V (2.149
71 2 Jqh  #2'z sh 1;W dT JT

I e- IT dq2 e- a%

Matrix elements of period - always real numbers. In fact, in the

unstable region, according to expression (2.90),

W -- ; l: e -(- ) e* sh I (-- )" sh k.

so that all factors in expressions (2.149) are real. In the stable

region

W -- 2i; sh =isin ,

whence it is directly evident that T,,, Ti, are real. Formulas for

elements/cells T, I', contain in the parenthesis of a difference in
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the complex conjugate numbers; therefore T.., T,, is also real.

From equalities (2.149) it follows that the sum of the

elements/ce2ls of principal diagonal is equal to

T, -- T,= 2ch 1.

Hence

Ch I = T pT. (2. 150a)

From inequality (2.91) it follows that the stability of trajectories

in the strong-focusing channel is provided with satisfaction of the

condition

SpT < 2. 12. 151)

In the region of stable solutions L-im and equality (2.150) has the

form

cs , r -. {" 2., 152)
COSI 2A-Tt-T2 o

where a phase change of Floquet in one period of focusing field.
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In view of the fact that the matrix elements of period (2.147)

are connected with condition (2.148), only three elements/cells can

be determined independently. It is expedient to introduce three

independent variables, which are determining the matrix/die of

period, as follows:

7",t- T'..
COS 2

U -- (2.153)

sine- T 1 1 -722

21 -T 1 2 T 2,

In the region of stable solutions parameters v, e are real.

Specifically,, conditions (2.148), (2.151) lead to the inequality

(Tit + T=)' = (Tit - T 2)' + 4 + 4T, 2T2, < 4,

or

- T,2T2, > I (Trt - T=)'.

Thus, in the stable region the elements/cells of nonmajor diagonal

always have equal signs, and sine on the modulus/module is less than

unity.

From equations (2.153) can be obtained the expressions for the
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matrix elements of the period through independent parameters of the

matrix/die

"1 -Cos (4 - C) " l.-" sin ti

cose T. cose (2.154)

-V __S COS -e)
ca Se Cos e

Let us connect the parameters of matrix/die v, e with the

modulus/module of Floquet function of channel. Substituting

expressions (2.149) in the right sides of formulas (2.153) and taking

into account designation for Floquet's functions in stable region

(2.96), we obtain

dQ + I
Q F~Q ~~s(2.155)sine-- -- "Qdi~ -

Of three independent parameters of matrix/die T one parameter -

constant value: u=const, and two others v(), e(r)- periodic

functions of the independent variable with the period Ar=l. Parameter

8 is equal to zero at the points of the extremum of Floquet's

modulus/module. At the points of extremum the matrix/die of period is

simplified:

T=(COS -sin IL) (2.154a)-v sin 1 cosp 1
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According to expression (2.155),
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toi e - -

vcosv - (2.156)

Hence, taking into ac:ount expression (2.100), we have

_ vCO '. .

Product vcosE- the instantaneous frequency of transverse

oscillations to scale of time r. To scale of time t

v CO8

,2.138)

Channel capacity is determined by the minimum value/significance of

instantaneous frequency (2.158). At the point where frequency (2.158)

reaches minimum value/significance, L=0 and

V'b

Ur Nits "•(2.159)

Here v- value of parameter v in the middle of the focusing

gap/interval with -=0(Trt=T=).Subsequently for the convenience we

utilize dimensional (in scale of time t) and dimensionless (to scale

of time r) frequencies.

If the matrix/die of period is calculated, then means known the

modulus/module of Floquet and his derivative at the appropriate point
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of the channel:

S Cos e (2.160)
YT (tg

Let us examine based on examples the procedure of calculation of the

matrices/dies of period, in the channel of the type FOD (see Fig.

2.6) the accelerating clearance is located in the gap/interval,

situated after the focusing lens, and between the pair of the lenses,

structurally/constructurally united, is a section, free from the

fields.
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At the length of the focusing lens the displacement and path

inclination undergo linear transformation

(2) P ( X )0'
where x., x.-dx/dr(0) - displacement and path inclination at the

entrance, and x,, - at the output of lens; P - matrix/die, which

characterizes the action of the focusing lens. After the accelerating

clearance

where r- matrix/die of accelerating gap. Further particle passes
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the defocusing lens at output of which we have

where P - matrix/die of the defocusing lens. The period of focusing

field concludes according to the condition with idle gap/interval; at

the output of idle gap/interval the displacement and path inclination

have values x., x,=dx/dr(1), moreover

S= H = HfrP

Thus, matrix/die the period of focusing field takes the form

T =HPrP. (2.161)

According to expression (2.161), the matrices/dies of sections are

multiplied in backward sequence - from the end/lead of the period at

the beginning. The matrix/die of the same period in the perpendicular

plane will be, obviously, that follows

T= HPrP. (2.161a)

Now let us assume that we deal concerning the channel of the type

FOF-DOD (see Fig. 2.6). Let the accelerating gaps be arranged/located

between the lenses of one sign, and idle - between the lenses of

different signs. Let us begin period from the middle of accelerating

gap. Then

T = r,,PHPfrPHPr,1 ,. (2.162)

Index 1/2 means that is taken the matrix/die of half of accelerating

gap. Analogously it is possible to compose matrices/dies for any
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other types of period. If the matrix product of individual sections

is symmetrical as, for example, in expression (2.162), then the

elements/cells of the principal diagonal of matrix/die T are equal,

so that at the initial point of period occurs the extremum of

Floquet's modulus/module.

Let us determine the matrices/dies of sections.

Matrix/die of quadrupole lens. Let us assume that at the length

of the section, occupied with quadrupole lens, there is no

accelerating field. Then, according to expressions (2.55), (2.56),

Q=S' eG
p (2.163)
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Let us assume further that at the length *of lens D the gradient of

focusing field - constant value. In this case of Q-const the equation

of motion (2.53) has in the focusing section a solution

x = A cos Ir - B sin I
dx - AVQsin Vt± B I Qcos 14r.

where A, B - arbitrary constants. Let us assume at the entrance of

the focusing lens correspond i-0; the coordinate of output r-D/S.

Arbitrary constants are determined by initial entrance conditions
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A=xo', B =---. - ""

At the output of lens we have

-. D1 IQ0 si n L.

sin DCOSD1 
(2. 164)

S

Value

K=1 Q

let us name/call the hardness of lens. Substituting for Q its

value/significance (2.163), we obtain the following expression for

the hardness of the lens

K =D -. (2.165)

In formula (2.165) all values to the right are measured in the system

of SI units. Hardness is dimensionless value. According to

expressions (2.164), (2.165), the matrix/die of the focusing lens

takes the form

cosK sinK) (2.1661
K_ sinK cosK

In formula (2.165) the value of gradient is taken in terms of the

absolute value. Then hardness proves to be one and the same real

L ~ ~~ ..... .......................
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value in plane XOZ and in plane YOZ. Fe:- the defocusing lens the

gradient has negative sign, and value K in matrix/die (2.166) should

be replaced by iK.
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Since cos iK=ch K, sin iK=i sh K, then matric of the defocusing lens

is equal to

chK -shK\
(2.167)

Matrix/die of idle gap/interval. At the length of the idle

gap/interval h of field are absent: Q(r)M0 and K=0. Let us pass in

matrix (2.166) to the limit with K--0. Assuming/setting D=h, we

obtain

H-(I hiS) (2.168)

Matrix/die of accelerating gap in the system with the traveling wave.

Let us examine the case when between the lenses particles are

accelerated in the traveling wave. This case can be encountered in

the linear accelerators to the superhigh energies. Within the

accelerating gap according to the condition there are no focusing

fields; therefore, according to expressions (2.55), (2.57),
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eS dE,
Q (T) 2 0y- * -N (T).

Let us replace derivative of field with expression (2.12). Taking

into account formulas (1.70), (1.82) we have

Q~~~ (T 2.00>2 Sin q

Further let us assume that at the length of the accelerating gap

between the adjacent lenses it is possible to disregard a change in

the phase of particle p. Then Q=const. Let us introduce designations

for the following combinations of the parameters which will be

frequently encountered subsequently:

. / S "'9y o = "k - . (2 .169 )

Y esin i - (2.170)
¥= 'sin (p,

Value 7 let us name/call the factor of defocusing. The equation of

transverse motion for the particle with the phase o in this

accelerating gap will take the form

,w--2yx= 0. (2.171)

Equation (2.171) is reduced to equation (2.13), if we assume 9=T,

and to switch over from variable/alternating r to the dimensional

time t.
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The matrix/die of accelerating gap at the positive value/significance

of the factor of defocusing takes the form

IchL~f~ -- Sh'
F=S I) sh2.1,2)

where . - length of accelerating gap. If particle moves in such phase

of travelling waves, in which the factor of defocusing is negative,

then accelerating field focuses; hyperbolic functions in matrix/die

(2.172) convert/transfer with this kV circular ones. The determinant

of matrix/die (2.172) just as the determinants of matrices/dies

(2.166)-( 2.168), is equal to unity. It is possible to show that the

equality to one of all determinants of matrix of transformation - a

consequence of Liouville's theorem.

For the high energy particles the frequency of longitudinal

vibrations is small, so that the factor of defocusing (2.169) is

substantially less than one. In this case matrix/die (2.172) is

possible with accuracy sufficient for the practical purposes to write

in the form I I (1r= . (2.1731

Any matrix/die, whose elements/cells of principal diagonal are

identical, and determinant is equal to one, it can be represented in
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the form of the product of following three simple matrices:

, I I . (2. 174)

Producing multiplication and equalizing equivalent components of

matrices/dies, we obtain

a-- -- IT I - (==: 2. i 5)

Let us decompose on the factors of type (2.174) matrix/die (2.172):

a= --- th b= sh 1 (2.176)
I 2 2S b~~ S 2

With 7<<l we have a=L/2S, b=27(l/S) or

F=(1 V/S) 2l 0) (1 l/SS .
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Thus, if 7<<l, then the action of accelerating gap is reduced to the

action of two idle clearances by length 1/2 and to the action of the

middle refracting plane with the refractive index of the trajectory

2V (2.177)

Ratio S/A - number of accelerating gaps, which fall for one

period of focusing field. Let us exclude the focusing lenses. Then

the general/common/total effect of defocusing, connected with

accelerating field, is characterized in the period only by the
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sequential action of matrices (2.172)

S -s

In accordance with the theorem of Sylvester [68]

_Vl~ 1 (2.178)
(j' Sh [2y Ch I2, I

If the factor of defocusing is sufficiently small, then

I =(' .

Hence we see that the refractive index of trajectory at the length of

one period of focusing field is numerically equal to doubled value of

the factor of defocusing.

Matrix/die of accelerating gap in the system with the standing

waves. Let us examine for the concreteness of that accelerating the

clearance between drift tubes. The calculation, given subsequently,

can be transferred to any accelerating system with the standing

waves. We approximate ti t accelerating field in the clearance by

"square wave": let us assume that the longitudinal component of field

at the gap length is constant, and within drift tube abruptly it

drops up to zero. In view of the uniformity of field in the clearance

function (2.57) is equal to zero out of the clearance and inside it,

and entire effect is created only at the end-points at the entrance

and at the output of clearance. The matrix/die of the accelerating
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clearance can be represented in the form of the product of three

matrices/dies. Outer matrices/dies describe refraction of trajectory

at the entrance and at the output of clearance, and average

corresponds to the idle gap/interval with a length of g:

1 . 0 1 0)
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Hence

S S 2.179,

YI Y2 - IS)')2 S --

Let us find the refractive indices of trajectory 7,, 7,. Regarding,

at the entrance of the clearance

I 'dx "
X dT

Let us integrate equation of motion (2.53) along the period of

reentry, bearing in mind that in the period of reentry the particle

displacement from the axis does not manage to change

-g, 2S
-= --x 1 Q (-) dT. (2.180)

In integral (2.180) the variable/alternating r is counted off from

the geometric center of clearance. Substituting in integral (2.180)

function (2.57), we obtain
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Y' = -- 2 o ---- 2 zeS d

whence

e S
E.,~

For the second refractive index occurs the analogous expression

If synchronous phase in the absolute value exceeds 8-10o, then it is

possible to disregard the effect, connected with a change in the

particle speed in the clearance. Then

E. (Z) = L Eo cos - , (2.183)

where E. - middle field; L - length of the period of the accelerating

structure; Q - phase of standing wave at the moment of the time when

particle passes the center of clearance. Let us substitute expression

(2.183) into equalities (2.181), (2.182) and moreover for the factor

of transit time (1.28) the approximation formula

sin
T- (2.184)

ag
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Under the assumptions
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L COS 'P
sin - -sn (P

L ag ,L Cos '4F --i .
Y" - Y-S sin s fsin ip,

indicated The parameter 7 is determined by expressions (2.169),

(2.170). Hence

Y, + Y2 
2Y "-

Wen " N
'

When < we have -KY,2 < 1 and the matrix/die of accelerating

clearance (2.179) is reduced to the form

r (L ).(2.185)

If the accelerating clearance sufficiently narrow, g/S<<l, then its

action is reduced only to the refraction of the trajectory:

r=( 1 L • (2.186)(2yl -

Ratio S/L - a number of accelerating clearances in one period of the

focusing field. As it is easy to show,

2yTI O 2y I

Thus, and in the case of accelerating the beam in the field of

standing waves the factor of defocusing (2.170) characterizes the

complete defocusing of beam by high-frequency field in period S.
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Let us note that at the length of accelerating gap function

Q.(T (2.57), entering the equations of motion (2.53), can be

approximately replaced with average value, constant by the length of

the gap/interval

gS iQ (~d.(217

Then equations of motion in the section of accelerating gap will

contain the constant coefficient:

Ar
-,+Q.x =0. (2.188)

Page 113.

Actually/really, from formula (2.187) it follows

Q. = --2Y L

so that the solution of equation (2.188) coincides with the result,

obtained above. By equation with the averaged coefficient it is

convenient to use when is not utilized matrix symbolism.

Into the product, which is determining the matrix/die of the

period of focusing field, can enter matrices of several accelerating

gaps. If the period of focusing field is short in comparison with the
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period of longitudinal vibrations, then in all matrices/dies of

accelerating gaps can be used one and the same value/significance of

the factor of defocusing.

S 2.6. Selection of the parameters of the strong-focusing channel.

Let us examine several strong-focusing systems, on an example of

which it will be possible to explain the characteristic laws,

important for the identification of the parameters of the

strong-focusing channels.

Let us assume that the strong-focusing channel continuously

consists of the alternating lenses (channel FD, see Fig. 2.5). From

the considerations of symmetry it is obvious that the maximum of

Floquet's modulus/module falls in this channel accurately to the

middle of the focusing lens, and the minimum - to the middle of the

defocusing lens. Let us note that the channel FD is better to begin

with the half lenses, since then the initial conditions for the

matched beam are simplified: matched beam must have at the entrance

of channel a crossover. Matching conditions will be satisfied, if we

fit by correspondingly beam section in the crossover. Let us begin

period from the middle of the focusing lens:

T = P1,,/P,/,. (2.190;

Matrix/die P+12 corresponds to half lens and, as it is easy to show,
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has the form

K D s. K

( cos S1mT . 2.191,
P*t= SK K K

, ,--D - s i n - - C o s j.

Let us expand/develop product (2.190):

Tt = T- = ch K cos K.
T 12 = D (c h K in K -- sh K : 1.. t - . ,

DK (chKsinK-shK).
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The matrix/die of period in the perpendicular plane

T = P .. PP, 2

can be obtained from expressions (2.192) by replacement of K by value

iK:

T=chK cos K:

(cosKshK- -+sinK), (2.193

T., =- (cosK sh K - sin K).

In the channel S=2D in question. The independent parameters of

matrices/dies are determined by formulas (2.153). For both

matrices/dies e=0, The remaining parameters

cos ji = chK cos K; (2.194)

chKsinK-shK (2.195)vs- 2K chKsinKwshK

--- in K-/-cos K sh K (2.196)whe = ds fsin K i cos he

where v,-dimensionless frequency in the middle of the focusing
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lens; v,, the same in the middle of the defocusing lens. In

accordance with condition (2.151) the particle trajectories are

stable with

chKcoslK <1. (2. i97

In Fig. 2.16 is constructed the curve according to formula (2.194).

Along axis K is a series/row of the intervals, in which is satisfied

the condition for stability (2.197). The first and widest stability

region lies/rusts within the limits

0< K < 1,87. (2.198

With an increase in the hardness of lenses the following stability

regions rapidly decrease in the width. All stability regions after

the first are arranged/located about zero functions cos K, i.e.,

about the points
X = (2n - 1) n 2.3r; n=2. 3,. .

The width of stability region with n,2 can be calculated according to

approximate formula

AK 2 (2.199)

ch (2n-1)

From formula (2.199) it follows: AK-0.036 with n=2; AK=0.0016 with

n=3.
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The field gradients of quadrupole lenses usually are selected so that



DOC = 82105202 PAGE449

the hardness of lenses it lay/rested at the first stability region

(2.198). The use of the following stability regions requires too high

a stability of gradient. Actually/really, according to expression

(2.165)

K -- (2.2' 0)

it is easy to see that entire/all second stability region passes with

a change in the gradient to 1.5o/o.

Is optimum value cos u within the limits of the first stability

region it corresponds to greatest possible value/significance y*.

since in this case is provided maximum channel capacity. Let us

construct the dependence of dimensionless frequencies ', v on value

cos a. These dependences in the parametric form are assigned by

expressions (2.194)-(2.196). With cos u=l we have K = 0, v® = v, = 0

With cos /s=-l

CosK - hx: sinK=thK.

Hence

Vs-- 0 C
ri .--I P H C O S itt -

Key: (1). with.

The form of the function v® (cosR) and va (cos fI) is shown in Fig.

2.17. Maximumvo, as follows from Fig. 2.17, it begins with cos

U0.164, moreover at the point of maximum 'b = 0,66.
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Fig. 2.16.
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However, maximum is flat and it is possible with unessential decrease

V* (to 5-8o/o) to increase cos m to 0.4-0.5. This makes it possible

to considerably lower the gradients of focusing fields, since with

increase in cos A the hardness of lenses and, consequently, also

field gradients rapidly decrease.

The position of maximum v4 on axis cos u depends on the

structure of period, but in the majority of the cases this maximum
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proves to be in the interval 0.2< cos u<0.4.

At given value va (in other words, with the assigned hardness of

lenses) it is possible to theoretically how conveniently raise the

frequency of transverse vibrations , by decreasing the length of

period S=2D, since

Q~r KKK(2.159a)

and in this case to respectively increase channel capacity. But with

an increase in the frequency of transverse vibrations increases the

gradient of the focusing field, since K2-.D2G

Before converting/transferring to the focusing periods of other

types, let us examine the approximation/approach of "thin" lenses. If

the length of the period of focusing field is fixed/recorded, then

with the decrease of the length of lenses falls the value of hardness

necessary for assigned cos M. Decrease of hardness is connected with

the fact that the idle gaps/intervals between the lenses amplify the

effect, created by each lens. However, since the decrease.of hardness

is accompanied by the decrease of the length of lenses, the gradient

of focusing field does not fall, but even somewhat increases. Thin

lenses, for which D/S<<l, are commonly used in the ion guides. The

strong-focusing optic/optics with thin lenses D/S<<l can be used also

in the linear accelerators to the suprhigh energies.
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However, with the energies in the range 0.5-100 MeV the parameters of

the strong-focusing linear accelerators are usualiv such, that for

the preliminary estimations it is possible successfully to consider

quadrupole lenses "thin". '-4Let us refine the concept of the

"fineness" of lens. For this let us represent the matrix/die of lens

(2.166) in the form of the product of three matrices/dies (2.174):

I -Lg t D --y K.
P= SK 2(2.201,

0 1 --- 0i

Outer matrices/dies are equivalent to idle gaps/intervals with length

along the axis z, equal to D/K tg K/2. Average/mean matrix/die

corresponds to refraction of trajectory (jump of derivative) in each
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of principal planes of thick lens (Fig. 2.18). By analogy with

optic/optics it is possible to introduce the concept of the focal

distance of lens, calculated off principal plane II:

Expression (2.202) follows from the simple geometric considerations,

if we trace the particle trajectory, which was moving prior to the

entrance into the lens in parallel to axis. Lens is called thin, if

its length substantially less than the focal length. According to

expressior (2.202), the lens is thin, when its hardness is

sufficiently small

K sinK. 2.

For satisfaction of the condition of "fineness" it is not compulsory

so that the length of lens would be small in comparison with the

length of the period of focusing field.
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Fig. 2.18.
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But if lens is long, then its focal length must be large. Let us

write the ratio of the length of lens to its focal length in the

form:
D D S

Let us examine two different cases of satisfaction of the conditions

of "fineness":

1. The length of lens is substantially lower than the length of

the period of the focusing field, but the focal length of lens can be

commensurated with the length of the period:

D +i s T 1 (2.204)

2. Focal distance of lens is substantially more than the length

of period of focusing field, but length of lens can be commensurated
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with length of period:
S D

I. -, - (2205

With satisfaction of the general condition of fineness (2.203) the

matrix elements of lens it is possible to expand in power series on K

and to use a finite number of terms of expansion. in the case (2.204)

it proves to be sufficient to be restricted to the first terms of

expansion. If D/S~!/2, then it is necessary to draw the second terms

of expansion. But if condition (2.205) is satisfied, then equations

of motion can be solved in the "smooth" approximation/approach which

let us examine in S 2.7. In the smooth approximation/approach the

ratio of the length of lens to the length of period can be any,

provided the focal length of each lens was much more than period.

Under condition (2.204) the use/application of

approximation/approach of thin lenses is especially simple. By

replacing
K K

we have

P =- SK2 1 0 - (2.206)
0 1 D 0

The matrix/die of thin lens is equivalent to two idle gaps/intervals,

by length D/2, divided by one refracting plane.
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L
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Since D/S<<l, matrix/die (2.206) even more is simplified

1 0 1(2.2(Va,

and thin lens is replaced by refracting plane. For simplification in

further recordings let us introduce designation

Then the matrices/dies of thin lens will take the form

1 0 0
P=I.P -- 4h I!: t! = 1 I -2f2 %

It is easy to show that the same matrices/dies for thin lens can be

obtained by another method, by assuming that a change in the particle

displacement at the length of lens is negligible. Actually/really, by

integrating equation of motion in the section of longitudinal axis,

occupied with the field of lens (taking into account the rea|

distribution of gradient along the axis), with x=const we obtain
dx eSS i'

- = -x - G(T) dT. (2.209)

Hence
dxI-T = --4 K~x,

where

K!=D e.1 G(z)d-. (2.2101

Comparing expressions (2.165) and (2.210), it is possible to see that

K - hardness of thin lens, determined with the effective value of the



DOC = 82105202 PAGEn3h

gradient

Thus, if we determine the hardness of thin lens by the formula

then

The length of lens, entering equality (2.211), can be selected

arbitrarily, since initial expression (2.209) this length does not

contain.

Let us examine channel FODO (see Fig. 2.6), which consists of

thin lenses D/S<<1. The matrix/die of the period, which begins from

the middle of the focusing lens, is equal to the product

T = P,,HPHP.
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The length of idle gaps/intervals according to the condition is equal

to S/2. We have

(l-2b lb )'~~0 (1 --b - b) Il-2b2)"

In matrix/die T reverses sign b. Then, according to expression

(2.153),
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cos ii = I - 2b2;

v,0=2b - .

1 "(2.2 13)

To the beginning of the first stability region corresponds b=O; cos

M=l: o=V,0. At the end of the first stability region b=l;

cos 1=-l: Yt=0: v,-O. Derivative becomes zero withdt'

b=0.62. Maximum value/significance 'vo.0.60 attains at cos 4=0.24.

General/common/total variation v6, v,, on cos u it is qualitative the

same as in Fig. 2.17.

When the period of focusing field contains accelerating gaps,

the selection of the medium frequency of transverse vibrations

becomes complicated. Let us return to the period of the type FOD with

the accelerating clearance whose matrix/die is determined by product

(2.161). For simplification in the problem let us disregard/neglect

the idle gaps/intervals between the lenses and we will consider the

accelerating clearance infinite narrow (g/S<<l):

T=Pr--P. (2.161a)

Matrix/die r is assigned by expression (2.186). In this case for the

period falls one accelerating clearance, so that it is possible to

assume L-S:

0) (2.214)



DOC = 82105202 PAGE

Turning/running up the matrix/die of period, we obtain

cos4.=chKcosK+y chKsinK4shKcosK (2.215)
2K

The medium frequency of transverse vibrations can be selected, if to

use the diagram of stability in the coordinates 7,_by'K, proposed by

Smith and Glyukstern [321. Let us apply on plane 7, K family of

curves K(7), which correspond to different fixed values of cos w

(Fig. 2.19). Factor of defocusing (2.170) depends on the phase of

particle.
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Operational conditions on the diagram of Smith-Glyukstern is usually

selected in order to not exceed the limits of the stability region of

transverse vibrations in any phases of the particles, which lie

within separatrix (1.59). The region of stable phases lies/rests

within the limits

2T, < q < -,. (2.216)

Hence we obtain the limits of a change in the factor of the

defocusing

-y, < y < 2y, cos.,. (2.217)

For the stabilization of transverse vibrations of all particles,

seized into acceleration mode, operating point should be selected

inside the shaded rectangle which is limited by the curves cos unl
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and cos a=-1 (see Fig. 2.19). The limits of the permissible change in

value cos M for the synchronous particle are determined by the cut of

vertical straight/direct with abscissa . =y,, lying in limits

cos 4, < cos P" < cos 42.

For an increase in the channel capacity value cos w should be

selected in these limits so as to ensure maximally high

value/significance vb = vw.

For the preliminary estimations it is possible not to resort to

the diagram of Smith-Glyukstern, construction of which requires, as a

rule, cumbersome calculations, but using the simplified formula for

cos m. Let us represent the equality (2.215) in the form

cos cos -Yi(K),

where

cos Rs,= ch K cos K

characterizes the focusing channel in the absence of accelerating

gaps, and factor with the factor of defocusing is equal to

f(K) - (ch K sin K + sh K cosK).

This factor noncritically depends on K, after remaining close to

unity over wide limits of hardness change:

1(K)=z K' K4

In interval 0<cos 4<1 factor f differs from unity less than to

20o/o and in the approximate computations it can be replaced by one;

then we obtain the simplified formula

cos CO-cSR$+ Y. (2.218)
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Fig. 2.19.
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Formula (2.218) is approximately valid not only for the period in

question. Subsequently let us show that in the smooth

approximation/approach formula (2.218) occurs in the general case.

Formulas (2.214), (2.215) relate to one of the simplest periods

of focusing field in the linear accelerators. In the more complicated

cases the period contains several lenses of one sign and several

accelerating gaps. Into the product, which is determining the

matrix/die of period, enter as many matrices/dies P and with respect

to P, as lenses of one sign in the period (n), matrices/dies r and

as accelerating gaps and period (S/L). Table 2.1 gives values n and

S/L for some proton accelerators. In the general case value cos g -
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the complex function of the parameters, which are determining a

number of identical matrices/dies in the product and elements/cells

of these matrices/dies in different sections of period. Let us

disregard/neglect idle gaps/intervals. Then such parameters prove to

be six:
LosS S KL n D. (2.219)

The diagram of Smith-Glyukstern it is necessary to construct each

time anew for the fixed values of four latter/last parameters in

expression (2.219). However, for the preliminary estimations during

the selection of the structure of period problem can be substantially

simplified, if to introduce two assumptions:

1. The length of each accelerating gap is much lower than the

length of the period of the focusing field

S sl:7 - 2.
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T'able 2.1.

ycKop1uLI"IK 4HCJ10 .'1H3
C1 ) ' CKOpHTeJIlM Twn nePHO., fpoMewTKUB ,,,Moro

3 4 a n

,-.I pe3oHaTOp .Heiioro \CKoPH- (l'2
7e.-l5 [1-2

2-o pe~o1T.M p utHeiiHoro vcKopl- ) .70,7 2
Te.7q H-2 .. . ............

(4o)
i PC3o0HaTOp MiAehTopa IEPH 4P510 1
CKopHTe.lb It-IuO

2-f it 3-9 pe3omaTOpb imHeKTopa 000,10J20 4 2
LIEPH

Key: (1). Accelerators. (2). Type of period. (3). Number of

accelerating gaps. (4). Number of lenses of one sign. (5). ist

resonator of linear accelerator 1-2. (5a). the 2nd resonator of the

linear accelerator 1-2. (6). ist resonator of injector CERN

accelerator 1-100. (7), 2nd and 3rd resonators of injector CERN.
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2. Defocusing action of all accelerating gaps in one period can

be noticed by their cumulative effect, led to one point of period.

Then, for example,

T = VpFp : PPrrrpp = -Pp

In the general case we will obtain the matrix/die of period,

analogous(2.161a),

T r LP . (2.220)
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But matrix/die r'sL exists (2.214), and raising to the power of

matrix of lens analogous (with 2.178) gives

pC Cos. co ' K . -?K''.

-2nKsin IK Cos , A - n riK -

so that
COS = (,IK, ,

where f - function (2.215), in which hardness K is replaced by value

nK. Thus, the introduced above simplifying assumptions make it

possible to construct the diagram of Smith-Glyukstern in the

coordinates 7, nK, approximately valid for any values of n, S/L. This

diagram coincides with the diagram, given in Fig. 2.19, if we replace

the designation of axis K by nK.

Field gradient in the quadrupole lenses is connected with

parameter nK with the relationship/ratio

K=,nD P,

where nD - total length of the lenses of one sign in the period. It

is increased a number of lenses of one sign in the period, keeping

constant the length of lenses and after increasing respectively the

length of period. Then
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1) with assigned cos m is retained nK and, therefore, field

gradient in the lenses falls as 1/n2;

2) with an increase in length of period S~~2nD increases the

factor of defocusing of synchronous particle (2.169) and, therefore,

the spread/scope of oscillations 7 increases as n2. The region of

allowed values cos u is compressed and with sufficiently high values

v becomes zero;

3) with an increase in the length of period decreases thie

minimum frequency of transverse vibrations (2.159). Channel capacity

falls as 1/n.

Consequently, an increase of the number of lenses of one sign in

the period (with D=const) makes it possible to substantially lower

the power, spent on the focusing, but in this case is decreased

stability region and descends channel capacity.
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In the initial part of the proton linear accelerator with the

energies of injection to 1 MeV system n-2 does not provide the

stability of particles with all phases and limits of separatrix. In

further parts of the accelerator when the factor of defocusing of
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synchronous particle already sufficiently attenuates, this system can

be used, if is admissible a reduction in the capacity.

For the analysis of the focusing channels with the accelerating

gaps it is possible to utilize another diagram, sometimes more

convenient. This diagram let us examine subsequently.

Since the medium frequency of transverse vibrations for

synchronous particle 1, is selected so as to ensure the stability of

all particles, seized into acceleration mode, and to obtain a

maximally high value/significance of capacity, then is expedient to

support cosR, with constant at the length of accelerator. This

condition does not always succeed in maintaining/withstanding, since

in the beginning of accelerator the gradient of focusing field can

prove to be too great and virtually unrealizable. In .that case is

begun the channel from the lower value/significance of medium

frequency, and then they gradually lead medium frequency to the

optimum value. In view of the fact that the phase volume of beam

(2.125) remains invariant, the semi-axes of beam with an adiabatic

increase in the frequency decrease proportionally;j-

S 2.7. Floquet's functions in the smooth approximation/approach.

Parametric resonances.

L1



DOC 8210524-?"  PAGE O

The matrix method of calculating Floquet's functions gives

solution at one chosen point of period. This method is convenient for

determining the iatching conditions, calculating the medium frequency

of transverse vibrations, evaluation of stability region. At the same

time method possesses deficiencies/lacks. For example, the volume of

computational work rapidly grows/rises with an increase of the number

of different sections in the period.

Smooth approximation/approach gives solution for Floquet's

functions directly depending on 7 and does not require the

approximation of fields in the quadrupole lenses by square waves. The

approximate smooth solution proves to be sufficiently to precise

ones, if phase change of transverse vibrations satisfies the

condition
< < 1. (2.221)

Condition (2.221) means that the period of transverse vibrations must

be considerably more than the period of focusing field. Smooth

approximation/approach is reduced actually to the first approximation

of the method of the "averaging", developed by N. N. Bogolyubov and

by Yu. A. Mitropol'skiy [69]. Generally, smooth

approximation/approach gives sufficiently accurate results in all

cases when the frequency of periodic effect is much higher than the

natural frequency of dynamic system (70, 71, 21].
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We will search for the solution of equation (2.62) in the

following form:

X((r)= l1 +q(r)JX(r). t2.222)

Let us substitute solution (2.222) in equation (2.62):

d 2 . d q d X d 2 V d_= . 2 1

Further, let us determine function q(r) with the aid of the

differential equation
Q (r)d+ (2.224)

where Q - average/mean value/significance of function Q(r) in the

period

First-ovder eriva2ive5d

First-order derivative just as the second, periodic

functions r with the period Ar-I. Actually/really, from expression

(2.224) it follows

dq2
-~-T+ )dA-=O.=

Function q(r) is assigned with the aid of the differential second

order equation and contains two arbitrary constants. Let us select

one of the constants in such a day that would be satisfied the

condition
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dq 0 (2.2261

Then original q(r) will also be periodic function, since

i "9 dt=O
q(,+ 1 -- (T) = =- 0-

The second arbitrary constant let us determine by the condition

q q (r) dr = O. (2-227)

Thus, equation (2.224) together with conditions (2.226), (2.227)

uniquely determines periodic function with the period Ar=! and with

the constant component, the the equal to zero.
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If the distribution of gradient along the axis of channel can be

approximated by the sinusoid
Q i ) -O cos 2aT,

then function q - the harmonic:
S2K2ux O2~q(T) = 4ND., cos 2A.n

4.12D2

In the general case function q(T) is always substantially smoother,

than the coefficient of the equation of Mathieu-Hill.

Actually/really, function q - the result of the dual integration of

this coefficient. For an example Fig. 2.20 gives the course of

coefficient Q(,) in the channel FD (with the approximation of fields

by square waves) and corresponding to this coefficient function q(7).

Substituting expression (2.224) in equation (2.223), we obtain

(I +q)!!4+ (qQ + &) X +

2 A -A X= 0 . (2.223a)
d-r dT

From equation (2.223a) in the principle is determined function X(T)

for the exact solution. however, equation (2.223a) is not simpler

than the initial, since its coefficients are also the periodic

functions of time. Therefore we will search for approximate solution
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of equation (2.23a), assuming that function X(r) is changed slowly,

so that its change in each period of focusing field can be

disregarded/neglected. Then in accordance with expression (2.227)

X T)=X (T) -q (T) X (T) (T).

Value X in expression (2.222) - this is the average/mean

value/significance of trajectory in each period of focusing field. It

is averaged for the period equation (2.223a). Utilizing conditions

(2.226), (2.227), we obtain

d _' : _ X = 0 .(2 .22 8 )
dT2 =0

Into equation (2.228) is introduced the designation

JA=2 T) Q()T)dr. (2.229)
T
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Fig. 2.20.
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The solution of equation (2.228) exists

X (T) = A sin haT - 6). 2.230)

Consequently,

x (T) = A ll - q(T) sin !tT -- 0). '2.231)

Value p - the angular frequency of the fluctuations of the slow

component of trajectory (2.222). Cyclic period of a function q(7) is

2w. Slowness condition of function X(r), obviously, is satisfied with

<<2r. Solution (2.231) in this case is the slow sinusoidal function,

to which are superimposed "rapid" pulsations with the period of the

focusing field (see Fig. 2.5).

Let us rate/estimate the spread/scope of oscillations of a

function q(r); it is close to the harmonic. Therefore
dq ft 2.q - A - - aqd - 4q
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or

(yT) : Q-42rqr.

Substituting this expression into formula (2.229), we have

In the strong-focusing channel without the accelerating gaps the

average/mean value/significance of the coefficient of the equation of

Mathieu-Hill is always equal to zero. Let us find

connection/communication between the factor of defocusing and the

average/mean value/significance of this coefficient. Introducing

function (2.55) into integral (2.225) and taking into account that

number of accelerating gaps in the period is equal S/L, we obtain

S Q, (T)dT.

According to expressions (2.187), (2.189),

Q= -2y. (2.2321

The mean square of function q(r) proves to be approximately equal to
- :Z(P + Ya'

From conditions (2.221) and 7<<1 it follows that

q2  1; ,q '<1. (2.233)

Thus, rapid pulsations are small in comparison with the amplitude of

the slow component of solution.
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L-I i i I
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The amplitude of approximate solution (2.231) - periodic

function of the independent variable with the period Ar=l and,

therefore, is proportional to the modulus/module of Floquet's

function

Q(T) Z C II q ).

The phase of Floquet's function in the approximation/approach

accepted exists

Value u is equal to phase change of Floquet's function in the period

Ar=l, which coincides with the determination g, given in S 2.3. The

condition for the standardization of fundamental solutions (2.65)

leads to relationship/ratio (2.105), whence it follows

(I-+qj'
U

Let us expand integrand in series/row according to degrees of q and

we will be restricted to linear term. Condition (2.227) gives

C 7

Approximation for the modulus/module of the normalized function of

Floquet takes the form

+() l q (). (2.234)

The instantaneous frequency of transverse vibrations (2.103) is equal

to

(2.235)T4, (I + S
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the envelope of matched beam (2.122)

r (r) 1/ I f I- q (T)J. (2.236)

The semi-axes of the section of matched beam in both transverse

planes on the average are identical and equal to

-T- (2.237)

Envelope is relatively weakly modulated with the period of focusing

field, moreover the depth of modulation is uniquely determined by

function q( r). In the smooth approximation/approach the depth of

modulation of envelope does not depend on the phase volume of beam.

Let us replace in integral (2.229) tunction Q(7) with its

expression from equation (2.224) and let us take integral in parts.

As a result we have

- - dr. (2.238)

0
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Taking into account that coefficient Q(r) - the sum of two functions

(2.56) and (2.57), function q(r) also can be divided into two

components/terms/addends

q q0 - q..

as follows

d2q~b
- (T);

-- - (Q) + 1.
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Expression (2.238) will take the form

- J4i?- dq 'dq, dT

Let us examine each component/term/addend under the integral. Value

dqO =
dr

is a square of medium frequency in the channel without accelerating

field. Further
dq$ d-r d= 0.

d dT

Actually/really, reference point r always can be selected so that the
function Q.(T) would be even, and function QD(T) - odd. Then dql will

'T

be even function, and - - odd. Integral on the period of the

product of even and odd functions is equal to zero. The third

integral is proportional 72<<7 and it can be disregarded/neglected.

Finally we will obtain

IL= 4- 2y. (2.239)

If m is small, then

and equality (2.239) can be rewritten in the form

cos I=coS IL+Y. (2.218a)

This formula, obtained here in the smooth approximation/approach for

any focusing structures, is valid between very wide limits of change

Io. From the results of S 2.6 it is evident that for the rough

estimates it it is possible to use up to negative values cos ®, i.e.

formula (2.218a) emerges far beyond the limits of the applicability
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of smooth approximation/approach.
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The maximum spread/scope of function q(r) is proportional to the

ratio of the length of period to the focal length of lenses. Thus,

for the structure in Fig. 2.20 of equation (2.224) and conditions

(2.226), (2.227) it follows

qMaKC -

where Q - the fixed level of function Q(r) in each lens. But from

expressions (2.202) and (2.56), (2.165) we have
S _ s . D ,

K-- Q. (2.240)

Hence

Thus, the spread/scope of oscillations q(r) is substantially lower

than the ratio S/f. Smooth approximation/approach is correct, when

this relation little and in this sense it is one of limiting cases of

approaching thin lenses (2.205). However, smooth

approximation/approach does not require so that the ratio S/f would

be very little, and therefore it gives sufficiently accurate results

for the thick lenses when matrices/dies (2.208) prove to be already

inapplicable.

The comparison of formulas (2.229), (2.234), (2.235) with the
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exact solutions, obtained as a result of the numerical integration of

the equation of Mathieu-Hill, shows that smooth solution gives a good

approximation/approach to g (with the error within limits of 5-8o/o)

in the interval 0.3<cos 4<1, i.e., in the entire virtually

interesting part of the first stability region.

Approximations/approaches to instantaneous frequencies prove to be

more badly: accuracy indicated above are retained in the interval to

cos u=0.6-0.7.

The frequency of transverse vibrations depends on the phase of

particle. In the smooth approximation/approach, according to

expressions (2.239), (2.170),

sin (2.241)

The phase of the particle, seized into acceleration mode, varies

around the synchronous phase and the medium frequency of transverse

vibrations periodically is changed with the frequency of longitudinal

vibrations. Longitudinal and transverse vibrations prove to be

parametrically connected that it is possible to lead to the

supplementary driving of transverse vibrations at frequencies of

parametric resonance. By hypothesis, accepted above, the amplitude of

the longitudinal component of accelerating field does not depend on

transverse coordinates. Thereby it is disregarded by the parametric

effect of transverse vibrations on the longitudinal ones.
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Smooth approximation/approach makes it possible to simplify the

problem about the parametric resonances of transverse vibrations.
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Let us assume that the phase of particle in the period of focusing

field is changed negligibly little, but let us consider the change in

the phase, connected with the longitudinal vibrations, at the entire

length of accelerator. Let us examine only small longitudinal

vibrations, for which in view of (1.47)
s I q ~ .(2.212,

sin4

Equation (2.228) is reduced to the equation of Mathieu, since

- (FSit dit. ,2.24.

where D. ij - respectively instantaneous values of amplitude and

frequency of small of phase. From the expression for the factor of

defocusing of synchronous particle (2.169) we have

( "0)2= 4y.. (2.244)

In the approximation/approach of small oscillations (2.242) the

square of medium frequency (2.241) is equal to

P2 = -2y,Tctg q, (2.245)

where

'=p2-2y. (2.246)

and j, - medium frequency of transverse vibrations of synchronous

particle. Let us substitute expressions (2.243-2.245) in the equation
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for the slow component of transverse vibrations (2.228):

By the transformation of the independent variable

T

equation (2.247) is led to canonical form (2.108) with the values of

the coefficients

'S2.248)

The ranges of change in coefficients (2.248), which correspond to the

unstable solutions of the equation of Mathieu, are given in Fig.

2.11. The more detailed information about the character of the

solutions of the equation of Mathieu is contained in book [59].

Taking into account relationships/ratios (2.106), (2.244), we have

where Q.,- the medium frequency of transverse vibrations of

synchronous particle to scale of time t; S - frequency of small

longitudinal vibrations.
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Parametric resonance takes place when the medium frequency of

transverse vibrations of synchronous particle is close to half

integral value/significance of the frequency of the small

longitudinal vibrations:

Or = - Q (n= 1,2, 3, ). (2.250)T o
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In other words, the regions of parametric resonances appear about the

values

or C(2.25cosI, l-w5. .2 1

According to expression (2.95), the excitation of parametric

resonance occurs with the specific phase relationships/ratios between

the transverse and longitudinal vibrations. Therefore parametric

excitation they can test/experience not all particles. In the most

unfavorable case from expression (2.95) it follows

X() Ae- (?()cos (). (2.252)

Parameter k for different regions of resonance can be calculated by

the methods, presented, for example, in the book of MacLachlan [591.

The characteristic index of MacLachlan A is connected with parameter

k with relationship/ratio k=ur. If we rewrite solution (2.252) in the

form
X (t)= Ae'l IQ (t) ca 0~) (2.252a)

then the time constant of oscillation buildup will be equal to

(2.253)

where P _ _ period of longitudinal vibrations. Width of band of

resonance and time constant oscillation buildup in the middle of band

depend on coefficient of q (2.248). Let us accept for further

estimations D=-q,i.Thefn when cosq,=0,8 we have q=0.86.
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Let us give appropriate data for this value/significance of q.

1. First region of parametric resonance.

Width of unstable region

I - 0.84y, <cos .< I- 0.045y,. (2.2541

Middle of the band of resonance (a=l)

cos[,= I -0,Sy.

Time constant of oscillation buildup in the middle of the band

6 = 0,64T (2.255)
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2. Second region of parametric resonance. Width of unstable

region

I -2.20y <cos L, < I - 1.96y. (2.2561

Middle of the band of resonance (a-4)

cos A,= I - 2y.

Time constant of oscillation buildup in the middle of the band

0 =6.4T,. (2.257)

The regions of parametric resonance are conveniently examined on

plane y,,cosp,. If we apply to the same plane of the field of stable

trajectories, then diagram in coordinates y. cys4, will make it

possible to determine the optimum value of medium frequency taking

into account parametric resonances. Let us establish for each
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value/significance V, the permissible range of change cos ,, so that

all particles, seized into acceleration mode, would have the stable

trajectories of transverse vibrations in any phases in the limits of

separatrix (2.216). From equalities (2.218a) and (2.170) it follows

COS U=COSUs"-, f .i4-

When p =2r,

CosfV,=COSu. y, 2cosq -l,

When p = -q.

cos = cos tL. - 2y,.

Let us require satisfaction of the conditions

COStL'< 1: COS 'L> l.

From these two inequalities we determine the permissible boundaries

of selection cosu,:

-(I!-2y,) < cos p, < I -,,, (2 cos (f,- 1). (2.259)

In Fig. 2.21 is constructed the diagram of stability in coordinates

Y., cos s. The boundaries of the region of allowed values cost, are given

by heavy lines. If the values of parameters V, and costL, are selected

within the region, then by this are provided the conditions for

lateral stability of all particles in the limits of separatrix. Upper

boundary of the region depends on the selected synchronous phase. The

point of intersection of boundaries has coordinates

2 3-2 coq)q,
1*i+ 2cosgp.' O I + 2 cos ,"

Lower boundary intersects the axis of abscissas at point y,, =0.5.
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Stability limits on the diagram Fig. 2.21 are obtained on the

basis of approximation formula (2.218a).
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Precise calculations show that stability limit somewhat wider. Lower

boundary, obtained from precise formulas, lies/rests below than on

Fig. 2.21, and intersects the axis of abscissas at pointy,: (j,65.

Thus, construction of diagram according to the formulas of smooth

approximation/approach gives supply on the stability.

On the diagram Fig. 2.21 are shaded the regions of parametric

resonances.

Diagrams of this type can be utilized instead of the diagrams of

Smith-Glyukstern for the preliminary identification of the parameters

of the strong-focusing linear accelerator. The parameters of

accelerator are selected according to diagram 2.21 in the following

sequence. First are established/installed the values of synchronous

phase and specific acceleration, proceeding from the considerations,

connected with dielectric strength of accelerating gaps, the

permitted by expenditure high-frequency power and value of capture

region. Subsequently these values can be more precisely formulated

during the selection of other parameters. Strong focusing does not



DOC = 82105202 PAGE -30

usually limit the selection of synchronous phase. Then are determined

the frequency of small longitudinal vibrations and the factor of

defocusing of synchronous particle (2.169) at the entrance of

accelerator. During the determination of the input value/significance

of the factor of defocusing is selected the permissible ratio S/3X,

which ensures value ;. solved by diagram. By obtained

value/significance in the limits, solved by diagram, is selected

value cou,, making it possible to obtain maximally high frequency

, for the synchronous particle. Then they calculate the hardness of

lenses from the matrix/die of period or (in the permissible cases)

according to the formulas of smooth approximation/approach. By the

assigned hardness is determined the law of a change in the gradients

of lenses along the axis of accelerator, on the basis of the lengths

known for each period of lenses and particle speed.

Let us examine an example. Let us assume for the linear

accelerator of protons is selected the parameters:

cos = 0.8; Wx =2.71- a.. energy of injection W.=700 key. At the entrance

of accelerator (M1w) 1-8.73.10-1. If we select S/1A=4, then 1,=3.8

knowingly lies/rests at the unstable region.
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-a:

Fig. 2.21.
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with S/J3X=2 the factor of defocusing of synchronous particle

is located already in the stable region the diagram Fig. 2.21. The

time constant of the increase of the amplitude of transverse

vibrations in the region of first pbrametric resonance (n=l) is

equal, according to expression (2.255), approximately/exemplarily to

half of the period of longitudinal vibrations. This region is

dangerous, and during the selection of value cosli, it should be

avoided. Most adequate/approaching values cosR, both for reasons,

connected with the expenditure of power, and for reasons, connected

with the channel capacity, is cos v, 0,45- 0.60. If value co,,p, is kept
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constant along the axis of accelerator, then due to the adiabatic

fading of the factor of defocusing operating point on the diagram

will be displaced to the left and beam will pass the regions the

second, third and subsequent resonances. These regions are not

already virtually terrible, since they pass rapidly and correspond to

the slow responses of oscillation buildup. In the second region

parametric resonance leads to the maximum building up of

oscillations, knowingly less than i0o/o.

S 2.8. Transverse vibrations in the imperfect strong-focusing system.

Until now, were examined the strong-focusing channels without

the errors. It was assumed that the structural/design and electrical

characteristics of all periods were identical. In the regular channel

can be spread the matched beam. Different irregularities lead to the

disagreements/mismatches of beam and, therefore, to an increase in

its effective phase volume. Let us examine allowances for the

parameters of accelerator, connected with transverse vibrations. For

this let us calculate the disturbed (mismatched) parameters of beam

after each irregularity and will determine the sizes/dimensions of

the mismatched beam in the channel. In the general case the problem

is reduced to the determination of Floquet's ellipse, circumscribed

around the mismatched phase volume, i.e., to the calculation of

coefficient [ (see expression (2.140)]. Angle of the slope a and
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relation of the semi-axes of Floquet's ellipse (see Fig. 2.12) are

uniquely determined by the parameters of channel at each point of

period. Above we connected values M/N and a with the modulus/module

of Floquet and his derivative (2.119a). For the geometric

constructions it is useful to express the relation of semi-axes and

the angle of the slope of Floquet's ellipse through the matrix

elements of period. The substitution of expressions (2.160) into

formulas (2.119a) gives

I 2+co2s V Co s '

tg2a= 2sin e (2.260)
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At the points of the extremum of Floquet's modulus/module E=0 and

N
W=.v; Q=O. Let us examine the basic forms of the errors which can

arise in the strong-focusing channel of linear accelerator. The given

cases show the possible procedure of calculation of allowances.

a. Idle gap in channel. Let us assume that two parts of the

focusing channel are divided by the idle gap/interval with a length

of 1, which disrupts the regularity of channel. This gap/interval, in

particular, can arise between the adjacent resonators of multicavity

accelerator. If in the first resonator beam was matched with the

channel, then after the passage of idle gap/interval due to the drift

of particles along the axis x with dx/dr-const beam will be
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mismatched and its envelope will cease to be periodic function. The

effective phase volume of beam in this case grows/rises in accordance

with expression (2.140). Picture on the phase plane is analogous to

Fig. 1.14, but ellipse is extracted in the opposite direction, since

x grows/rises with dx/dr>0. The geometric calculation, analogous to

the calculation, given in S 1.4, with the use of formulas (2.138),

(2.139), leads to the expression

,f l+ a 1'a2+ ,.'a (2.261)
4 2

where
= v (2.262)

v. e - the parameters of channel at the point of the rupture of

regularity). It is possible to show that value E proves to be

minimum, when channel is brought at the point where e=o.

Actually/really, , - monotonically increasing function a, so that

;,=Lxmm when a=a ,. From formulas (2.154), (2.262) we have

a -(2.262a)S= , sin &

Parameter a attains the minimum with

d'4 iMo; dsTzI>0

Let us examine for simplicity channel FD. r - phase of period,

calculated off the beginning of the focusing section. By the

multiplication of the conformable matrixes

T(r-

we will obtain

T21- -2KIchKsinK-shKcos(4K-K);

Tu1 -2K Ich(4Kv-K)sinK-shKcosK.
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Hence
d T_- = 8K-sh A sin (I T- K:

dt

d T 1 =8K2 h(4r-)KsinK.
dT

Both functions 1T21 (r)l andiT,,(r)i have an extremum at point r='/, the

extremum corresponding to the minimum

d2 ! T2 d- T21 '=32K
3shK >U.

However, a similar result is obtained also for the periods of other

types.

Idle gaps/intervals lead to the essential disagreement/mismatch

of beam. Thus, in the linear accelerator of protons 1-100 the idle

gap/interval between the resonators falls to the points of the
S 2

extrema of matched envelope. In this accelerator ,=2;va=1,9. Hence

with i/AX=l we have ,=2,5;r ..=1,58rr.,. With i/AX=0.5 we have

i,= 1,6; r 1 = ,27rcor.

b. Displacement of group of lenses relative to axis. The

simultaneous displacement of the group of lenses can be connected,

for example, with the displacement of the foundation beam/gully to

which is fastened the part of the lenses of the focusing channel. Let

us assume the amount of displacement is equal to Ax, the displacement

occurring at point e =0. Let us assume that is displaced the section
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of the channel, on which is placed more than one transverse

vibration. This shift/shear corresponds to the instantaneous

displacement of center of oscillation. Picture on the phase plane is

analogous to Fig. 1.13. The amplitude of oscillations grows/rises by

value

AA =2Ax,

but the diameter of beam - by 4 Ax. Displacement tolerance of the

group of lenses usually is established/installed within the limits of

0.1-0.3 mm.

c. Displacement of one lens. The considerable displacement of

one lens can occur, for example, when terminal span half-tube is

fastened to the end-type wall of resonator and its adjustment is

respectively hindered/hampered. With the transverse displacement of

lens to value Ax the beam falls into the supplementary magnetic field

B-GAx, which deflects/diverts particles from the initial direction.

Parasitic slope deviation of beam, caused by the displacement of

lens, is determined for the thin lens by expression (2.209):

dx SA---=KAx.
dz
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This increase in the inclination/slope is general/common/total for

all particles and leads to the fact that the beam begins to oscillate

as whole (Fig. 2.22). In particles appears coherent component of
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oscillations. Since M=.\ the appearing in this case increase in

the amplitude is equal

A ,A - 2.263)
V%tjfl J-r

It is assumed that at the end of displaced lens e=0. which

corresponds to the worse case.

6. random errors in focusing system. Let us assume that the

random errors in the arrangement of quadrupole lenses and in the

gradients of focusing fields are distributed in all periods according

to one and the same normal law with the mathematical expectation,

equal to zero. In this case the mathematical expectation of an

increase in the amplitude of transverse vibrations is also equal to

zero. The evaluation of the effect of random errors we will produce

according to the standard deviation of an increment in the amplitude

from zero. Entire calculation let us conduct for the particles with

certain average amplitude of oscillations, but not for envelope of

particles, since if we conduct calculation for the envelope, then

after each random error they would be oriented to the worst particle

and would be obtained the too close tolerances, not justified

virtually. Allowances depend substantially on the structure of the

focusing period. Therefore everywhere, where it is necessary, let us

point out, for what structure is obtained the specific allowance. All

errors let us relate to one phase of period. For this phase let us

accept the middle of the focusing section in which V=VN.
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We differentiate the equation of trajectory (2.98). Taking into

account expression (2.155), we obtain

dx (2.264)-y- (r) v - (T) A (T) s in I[(D (T) E- (T) + l

The modulus/module of Floquet's function is connected with the symbol

of the amplitude of oscillations A(7). From equations (2.264) it

follows:
A -o xI x ,, ina, n X (2.265)Z--,.[X - , -T, - -a,- .

let the particle trajectory in the assigned phase of period

test/experience disturbance/perturbation Sx and 6(dx/dr). The

amplitude of oscillations will increase by value 6A.
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Fig. 2.22.
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We differentiate expression (2.265) and it is averaged on all

particles, considering all phases of transverse vibrations equally

probable to
(6,41 - .2 o)- , "- v

If we carry errors to the middles of the focusing sections where

~= , v--- ,, then

(6 A)-= (- - XP xX" ) (2.2

At the medium frequency fixed/recorded along the axis of channel of

the disturbance/perturbation of the amplitude transverse vibrations

do not attenuate. Afterward ,, the periods of focusing field the mean

square of the disturbance/perturbation of amplitude is equal to

-%A)26X ] , (2.267)

if disturbances/perturbations in the different periods are considered

independent variables and equally probable. Let us sum up
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disturbances/perturbations on the basis of all independent sources of

errors in each period

65x = !Ax: O~x !A

As a result we will obtain

Let us connect now values Ax and A(dx/dr) with errors in the

electrical and design parameters in each period. Let us consider the

following basic sources of errors: 1) the parallel displacement of

the magnetic axis of lens relative to the axis of channel; 2) the

inclination/slope of the magnetic axis of lens relative to the axis

of channel; 3) the rotation of the median axes of lens around the

longitudinal axis of channel; 4) the divergence of the gradient of

focusing field from the nominal value. For simplification in the

problem we will not examine the longitudinal displacement of lenses

relative to calculated position. The effect of latter/last error is

small. For example, in the accelerating system with drift tubes the

displacement tolerance of tubes, connected with the longitudinal

vibrations of particles, proves to be several orders harder than

displacement tolerance of quadrupole lenses. Let us introduce the

perturbing factors into the equation of motion (2.62). First, there

are disturbances/perturbations, which displace beam as whole. These

disturbances/perturbations are connected with the

departure/attendance of zero-field from the optical axis of channel.
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If coordinate x, is counted off from the magnetic axis of lens, then

X= x - x (T).

where X(T) characterizes the divergence of magnetic axis from the

optical. In the second place, there are parametric

disturbances/perturbations, which change function Q(r):

Q , ('1) = Q (1) -- 6Q (0).

Thus, the equation of the disturbed motion takes the form
d2X2 Q(I-a) (X --X)= 0, (2.269)

where
a 6Q (2.270)

Taking into account the smallness of values x, a, equation (2.269) can
be simplified:

be s m l f e :d'x Q (I + a) X = QX. (2.269a)

Parametric effects are connected with the rotation of median axes and

the errors in the gradient. Parametric disturbances/perturbations act

on the particles differently, during the dependence on the amplitude

and the phases of the fluctuations of eacb particle, and their

resultant action is evinced by an increase in the transverse

sizes/dimensions of beam. The divergences of magnetic axis from the

optical cause the oscillations of beam as whole. We will search for

the solution of equation (2.269a) and in the form

x (T) = X0 (1) -- x ().
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where function x,(T) - particle trajectory in the ideal channel.

Initial conditions for x(r) and x0 (T) at the entrance of each lens

coincide:

Ax(O)=O: A dX
-2 t

Let us assume that occurs the parallel displacement of the

magnetic axis of lens relative to the axis of channel to value Ar0.

Equation (2.269a) is reduced in this case to the form

aj Qx=QAro.

We approximate focusing fields by "square wave". Then toward the end

of focusing lens (r=D/S)

Ax* = (1 - cos K) Aro;

A-1 X bSKsinKAro. (2.27I)

Solutions (2.271) are obtained analogously with expression (2.164).

For the defocusing lens are valid the same formulas with replacement

of K by expression iK.
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Subsequently let us rate/estimate allowances in the

approximation/approach of thin lenses Kl<<l. Because of a good

convergence of the obtained series/rows the approximation/approach of

thin lenses in this case it is possible to use at any values of K2<I.

In this approximation/approach
IdX4, SK

-

2 A x. K A ro; Xdt z S A ro:

I dxa  SK
2: Ax, ic- - K'AIro; A -,dr -D b Aro.I.-T
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If occurs the inclination/slope of the magnetic axis of lens

relative to the axis of channel without the supplementary

4-spacement, then function takes the form

X(T-- \r..

-here %- ~ absolute shift of each end/liad of magnetic axis.

.ntegration of equation (2.269a) in the section of the focusing lens

gives in the approximation/approach of the thin lenses

T2 271

Ax~~~ -h2 ILAF N

Let us assume two lenses of different signs are

structurally/constructurally united. Then the error of their

general/common/total inclination/slope is accompanied by the errors

of shift. In this case
Ix= _r i r 1

'A - - - K-yr.;
dA0 S ' -1r SK'4 Ar S12

D 2 ~F*- b-Ak

Let us examine now parametric disturbances/perturbations.

Deducting the equation of undisturbed motion (2.62) from equation

(2.269a), we obtain for Ax(r) the equation
(AX) + QAx = - to (T).- (2.275)

Solution we will search for in the approximation/approach of thin

lenses. In this case the right side of equation (2.275) can be

considered approximately constant and assumed x.=A, where A -
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average/mean value/significance of envelope in the period of focusing

field. The solution of equation (2.275) tcward the end of the

focusing lens takes the form
=-2.2

AXt-'4 At D I\.-1.

For the defocusing lens K2 is reversed the sign.
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If there is an error in the field gradient, then according to

expressions (2.163), (2.270),

a .(2.277)

But if the median axes of quadrupole lens around the axis of channel

sw .g through angle A, then the coordinate of certain point relative

to median axes tij they will be connected with the coordinates

relative to the axes of channel with the relationship/ratio

1 - sinA , cosA "

Assuming that the lens is ideal, it is possible to write the

potential of the field of the turned lens in the form

Us = tn'

or in the old coordinates

U, = Gxy cos 2AV- - I G (x2 - y') sin 2A*.

Then

By = Gx cos 2,V + Gu sin 2,ip.

In plane XOZ

By ~~ Gx jI-2 (AV)1.
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Hence we have

a= 2 (AVp)2. (2.278)

Let us convert the disturbances/perturbations of trajectories

(2.272), (2.274), (2.276) with the aid of the conformable matrixes to

the middle of the focusing section where v - =,
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Fig. 2.23.
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Fig. 2.23 shows the diagram of recalculation for different type

focusing periods. The converted disturbances/perturbations let us

note by the asterisks

* lx.; .. x4)-- 4) 2.279)
x 1 Axl; Ax2-. 9

Let us drop/omit recalculations, after assuming that they are

produced. Subsequently let us give the final results of calculation.

The contribution of different errors depends substantially on the

structure of the period of focusing field. For example, in the system

FODO lenses are fastened independently and the random errors in their

position are not correlated. In the system FOD the lenses are

structurally/constructurally united, so that positional errors

store/add up. System FOFDOD is the combined case. The correlation
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between errors in the gradient depends on the diagram of supply. If

the pair of lenses is supplied by current consecutively/serially,

then this corresponds to system FOD. Complete root-mean-square

disturbances/perturbations in the period of the type FODO (errors are

independent)

AA"X

Since the formulas for Ax* and Ax* are analogous, let us extract

formulas only for Ax*. For the period of the type FOD we have

A X* = Ax'* - -X,* .

For the period of the type FOFDOD (see Fig. 2.23)

Index 1 relates to the left pair of lenses; index p - to the right.

Calculations employing the given above procedure give the

following results. In the systems FOD and FOFDOD the errors of

lateral misalignment and parametric disturbances/perturbations in the

first approximation, average out, since Ax and Ax, have different

signs. The slant errors in these systems store/add up, since with the

change by the places for that focusing and defocusing of lenses

reverse the signs both in the value K 2 and in the average/mean shift

of the axis of each lenp. The effect strictly of inclination/slope is

unessential, but the axes obtained with the inclination/slope of the

pair of the lenses of shift give considerable contribution, moreover
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the errors of shift in this case are not compensated, but they

store/add up.

Thus, in the systems FOD and FOFDOD of the

disturbance/perturbation of trajectories, connected with the errors

of parallel shift and the parametric errors, it is less than in the

system FODO. The disturbances/perturbations, connected with the

inclination/slope of axes, in the systems FOD and FOFDOD are more

than in the system FODO.
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The thermal deformations of the rods of drift tubes usually lead to

lateral misalignment. In such cases the best results give systems FOD

and FOFDOD. The advantage of system FOFDOD over the system FOD

consists in the fact that the period FOFDOD is symmetrical; channel

FOFDOD it is easy to begin so that the matched initial conditions

would correspond to the crossover of bundle. During a good

temperature stabilization of rods the system FODO is more preferable,

since it is structurally/constructurally simpler.

Let us give the summary of the formulas, obtained as a result of

calculation employing the procedure indicated. Rms value of an

increment in the amplitude of transverse vibrations

(AA) = V' T-L x)'+ - - '
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Components of disturbances/perturbations the following:

1) the inclination/slope of the longitudinal axis of the lens

(x) =aK-(Ar,): Ax) = .

2) lateral misalignment of the lens

(ax*) = aKI(Aro); (Axe* = b2K2 (Aro);

3) the rotation of the median axes of the lens

(Ax)' = 4a.K'A / (,p)' ; (Ai-) = 4b-KA V (FAp;

4) the divergence of gradient from the nominal value

(Ax*)=a 2K2A / W " , (Ax*)=b 2 KA W\-

The values/significances of coefficients of a,, b,, a,, b,:

1) system FOD

a,= l-- *' b= K-L- ;af=11 I121 2

2) system FOFDOD (g - gap length between the lenses; see Fig.

2.23)K

, = V-T [I -!'. -fl]'

+( 3 D)-
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3) system FODO

31 4 D /
KI 2  " g , 2" >'".

b, -
2 L D. 6 '2 -D 2 D ,J

b.,= I 2 1 --- 4- 2 -
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Due to low values vb the contribution of sum <ax*> usually is

substantially less than the contribution, introduced into an

increment in the amplitude by sum <&x*):

AA) IL -(2.280)Vb 2
Therefore the disturbances/perturbations of trajectories, connected

with the random errors, The less, the higher v,, and the less the

hardness of lenses. Hence it is apparent that working value cos u

should be selected near maximum v, decreasing, how this is possible

without noticeable reduction v$, the value of hardness. Above they

arrived at the same conclusion, on the basis of the considerations

about the channel capacity and power scattered in the lenses.

From formula (2.280) it follows that the allowances for the

random errors in essence depend on coefficients of b,, b2 . Table 2.2

gives the values of coefficients of b,, b, for different structures

in the zero approximation in K'. Table 2.2 shows the effect of
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different random errors in the focusing channel with the determinate

structures of period.

In practice during the calculation of allowances should be utilized

terms not lower than the first approximation on MQ. Let us give for

the orientation the summary of allowances for the strong-focusing

system of the proton linear accelerator I-100 with the exit energy

100 MeV (14]. In this accelerator is used the system FODO (see Table

2.1) with the series feed of the lenses of one period. The length of

period S=29X; medium frequency corresponds cosjs:io.5: the average

coefficient of clearance (1.23) a--0.25.
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Table 2.2.

Kose0HUH-I

b., 1.4

Key: (1). Coefficients.
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Allowances are distributed as follows: Aro Ar = 120 i;

= Allowances for the divergence of the magnetic axis

of lens from the axis of channel ,Aro, Ar, are divided into two parts:

allowance for the position of the magnetic axis of lens relative to

the centerline of drift tube 90 a; allowance for the position of the

centerline of drift tube relative to the axis of channel - 50 s.

Expected increase in the amplitude of transverse vibrations of

particles at the length of the accelerator

(AA> = 0,83 JV/ AX.

e. Nonlinearity of Zocusing field. In the real cases it is

impossible to achieve absolutely precise beam matching with the

focusing channel. Let us assume in the channel is spread the

unmatched beam with the ratio of effective phase volume to the true

(2.281)

If channel is comprised of the ideal quadrupole lenses, then the
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phase volume of beam will rotate within the effective volume without

the essential deformations. Besides rotation it can take place and

another form of the motion of true phase volume within the effective

- wandering due to the coherent divergences, which appear, in

particular, due to the shift of the magnetic axes of lenses from the

axis of channel. In the linear focusing fields all these effects do

not lead to the irreparable deformations of phase volume, with the

virtually equivalent to its increase. But if focusing fields are

nonlinear, then phase volume is distorted, since the frequencies of

transverse vibrations of particles with the different amplitudes are

different. As an example Fig. 2.24 shows the form of the phase volume

of beam after its passage through the accelerator with a number of

periods of focusing field ,V = 80 and cos ta 0.3, where p., - frequency

of small (linear) transverse vibrations. The ratio of effective phase

volume to the true is accepted by equal to 4,=2, and the divergence

of field from the linear value/significance on the radius, equal to

the amplitude of oscillations, composes i.lo/o. As can be seen from

Fig. 2.24, the nonlinearity of the fields of lenses leads to the

distortion of phase volume. Bulk of particles continues to remain

within the limits of the ellipse, which limits phase volume at the

entrance of accelerator. But the particles, which caught into the

ejections (not shaded in Fig. 2.24), should be considered lost, since

after the output of beam from the channel they, as a rul., no longer

can be used.
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Fig. 2.24.

Page 147.

Let us calculate the portion of the lost particles, on the basis

of the fact that the phase density is distributed evenly. Let us

disregard/neglect for simplicity the defoctzing action of

accelerating gaps and will examine transverse vibrations of particles

in plane XOZ of the channel, comprised of the imperfect lenses.

Substituting field expression of imperfect lens (2.32) in the first

equation of motion (2.51) and converting/transferring to the

dimensionless variable r, we will obtain

d~xQL ''Aox'l0 (2-262)

where G - value of field gradient on the axis of lens. In the first

approximation, the ratio of percentage distortions A ..... (determined in

essence by the profile/airfoil of pole) to the value of gradient on

the axis from the longitudinal coordinate does not depend. We will

search for the solution of equation (2.282) in smooth



DOC = 82105202 PAGE

approximation/approach (2.222), after being restricted to the first

two nonlinear terms. By assuming/setting
I -5q):

and by averaging equation (2.282) for the period of focusing field,

let us arrive at the following equation for the slow component of the

trajectory:

d-X . 9 \' 0.

The medium frequency of small oscillations K, is as before

determined by equality (2.229), and function q(7) - by equation

(2.224) and by conditions (2.226), (2.227). Let us multiply equation

(2.283) by dx/dr and will integrate. As a result we will obtain the

first integral
dX U. 2.284)

where

V(X) A2 o A2 5A o X;) 9 A (,IO-N-, ). (2.285)

Here X. - amplitude of the oscillations of the slow component of

trajectory. According to expression (2.284),

i dX

Hence we obtain the period of oscillations of the slow component of

trajectory with an amplitude of X,

XQ
2%4 dX2 = - = . .x (2.286)-I" = t ?-

0
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Let us substitute function (2.285) into integral (2.286) and is

decomposed denominator in the series/row according to the degrees of

the low values Ao/G and A20 /G. Being limited to the linear terms of

resolution and by integrating, we will obtain
__-- _ =lo\ 4 2.2" =oV

S12 G (2.287)

Let us note that values

AB, = A toXI; AB9 =A,~X

are, according to expression (2.32), the divergences of field on

radius X,, by the caused corresponding harmonics, from the ideal

linear value/significance of B=GX,. Thus,

ABs - , AB9 , AB

(2.288)

The relative deflection of frequency from the frequency of small is

approximately equal to the doubled relative deflection of field from

the linear value/significance on the radius, equal to the amplitude

of transverse vibrations.

Fig. 2.25 shows the dependences of a number of lost particles on

value AB/B at the different values e, for the accelerator whose
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parameters are stipulated above. Curves are obtained by the

calculation of areas on the graphs/curves, analogous to FiE. 2.24
- the -chs onEig 2.25 it

is evident that a number of lost particles noncritically depends on

the value of disagreement/mismatch Z,. If we allow loss by lOo/o of

particles and value of disagreement/mismatch not worse Z,=2, then

allowance for the divergence of field will compose aB/B~~0.5o/o.

Taking into account the linear dependence of phase change of small

oscillations on r at the length of accelerator, it is possible to

obtain formula for evaluating the standard deviation of field from

the linear within the limits of the assigned useful aperture

.B_ ,45 %, (2.289)

where N - total number of periods of focusing field at the length

of accelerator.
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Fig. 2.25.
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S2.9. Focusing by longitudinal magnetic field.

The basic advantages of the system of focusing, which uses a

longitudinal magnetic field of solenoids, in comparison with the

strong focusing are structural/design simplicity and facilitation of

requirements for the allowances. At the same time focusing by

longitudinal magnetic field possesses the essential

deficiencies/lacks which are examined subsequently. Due to these

deficiencies/lacks the longitudinal focusing fields in the



-
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contemporary linear accelerators find thus far only limited

application.

During calculations of particle dynamics we will consider

longitudinal magnetic field uniform. Real accelerating field let us

replace with the equivalent traveling wave. It is obvious that the

obtained results will relate to the particle acceleration in the

traveling wave and to the particle acceleration in the field of

standing waves with the smallness of a partial increase in energy.

The components of electric field take the form [see expressions

(1.43), (2.9)]

E:= E cosw w--

E. x aEl E = - -"Ex 2 dz' 2

Components of the magnetic field-

YE, . B X B dBTO - -d "- it =" J :=B

Here B - external focusing field. Field. By hypothesis B-const. In

traveling wave -=E- ,. Projecting/designing equation of motion

(2.5) to the transverse coordinate axes and substituting expressions

for the components of electrical and magnetic fields, we obtain

dp-eB y ex JE
eB--i _, -q- 01) -.-.:

dPVe WE (2.290)
eB dX-T'F = t :20 A)iz
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The equation of longitudinal vibrations retains form (2.50), if we

disregard/neglect the small terms x(dx/dt) and y(dy/dt). Assuming

that the mass of particles is changed sufficiently slowly, let us

rewrite equations (2.290) in the form

d.x eB du e ,L.
dt " m y at 2.-ro, : 3 ,

a"sy eB dx e (-._91
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According to expressions (1.70), (2.12),
e ME, Sn= .- sin p (2.292)-- ,o? 3 -& = sin T ,

where S - relativistic frequency of small longitudinal oscillations.

Let us introduce for the decrease of recordings the designation

Q si-n IF (2.293)
sin q

Value eBa,, = (2.294)

is frequency of the Larmor precession of particles in the mignetic

field. Taking into account designations (2.293), (2.294) we have

dtx dy - 1 I y
" "=2a). "Y" __ I x;

d'v 2 d . (2.295)
T ),- L + IQY

Together with the equations of motion in Cartesian coordinates

(2.295) let us examine equations in polar coordinates , :

x - rcost; y ==r sin i.
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Equations of motion in the polar coordinates can be obtained directly

from expressions (2.295) by the appropriate replacement of the

variable/alternatinc

d2r dt 2 di Ir,12 -2WL+2 d(2.296)
r -:2- 2UL d -2dr d v

Let us multiply the second equation by r. Assuming/setting wL=COnSt,

we obtain
/d --r2-At ()Lr2 =O.

Thus, one of the first integ-als of equations (2.296) is equal to

r 2 (- d- +OL) A, (2.297)

where M-const. Ravenstvo (2.297) is called Busch's theorem. It is

possible to show that Busch's theorem (2.297) is valid in the general

case when WL - variable quantity [643. Let there be at moment/torque

t-0: r-r,; d- Then

M = r: (, + wt).
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Let us assume that the particles enter into the focusing channel from

the region where there is no magnetic field. In this case the

constant value

M =rio
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makes physical sense of the moment of momentum of particle with the

single mass relative to the assigned axis of channel. If particle

enters into focusing field, without having initial rotation, then in

the field it will rotate with an angular velocity of

In the homocentric ray, i.e., in the beam, which possesses zero phase

volume, the moment of momentum is equal to zero for all particles. In

the longitudinal magnetic field all particles of homocentric ray will

rotate with identical angular velocity (2.298). When the disordered

scatter of transverse thermal velocities is present, there is a

scatter along the moment of momentum. Let us assume that the positive

and negative values of the moment of momentum are equally probable.

Then the average/mean value/significance of the moment of momentum is

equal to zero and
dV
dt = - WL"

The angular velocities of single particles in the focusing field

depend on the instantaneous value of the radius:
dW 't 3

Let us substitute this expression in first equation (2.296):
Osr ( 

%12

-+ t- r----=0. (2.299)

Expression (2.299) takes the same form as equation for envelope of

particles, obtained in theory of strong focusing. However, the

physical sense of equation (2.299) is another - this is equation not

for envelope of particles, but for a radius - the vector of any
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particle relative to the chosen axis. If we place the moment of

momentum equal to zero, then equation (2.299) is simplified:
d2r ,

Wt r =0. (2.300

With the zero initial moment of momentum a radius - the vector of

particle varies according to the sinusoidal law with a frequency of

W, = I/WL(2.301!

Homocentric ray is confined into the point through each half-period

of the radial oscillations
L, _av (2.302)
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In the absence of accelerating field the frequency of radius-vector

coincides with the angular frequency.

The solutions of equation (2.299) are the moduli/modules of the

corresponding complex solutions of equation (2.300). Consequently,

the solutions of equation (2.299) are stable, if are stable the

solutions of equation (2.300). Stability condition directly follows

from equation (2.300):

si>l, (2.303)
2 sin 4p,

Let us require so that the stability of trajectories would be

retained in all phases of particles within the limits of the

separatrix
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When P =-Ts condition (2.303) is satisfied automatically. This is

connected with the fact that in the positive phases accelerating

field focuses particles. When W= 2 ), inequality (2.303) is retained,

i f WI > Q , Cos

Since virtually l'cosq.z1, the latter/last condition can be

simplified
,L>Q. (2.304)

Taking into account that the frequency of small phase oscillatior.s in

the process of acceleration and diabatically decreases, beginning

from the initial value Q(0), it is possible, in particular, to select

L = Q (0).

In the focusing system with the longitudinal magnetic field

analogous with the strong-focusing system occurs the parametric

effect of longitudinal vibrations on the radial oscillations. Let us

examine the particles, which accomplish small longitudinal vibrations

(2.243) and not possessing initial rotation. The radial fluctuations

of such particles are described by.the equation

i,.+ [ L- 9 2 t p i t]r = 0. (2.305)

By the replacement of the independent variable
Q~ = 2n-r

equation (2.305) is converted to canonical form (2.108), moreover

a=\ -) 2; q= Dctg q,.

Stability regions are depicted in Fig. 2.11. Assuming/setting, as for
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the strong-focusing system, cosq,,=0 8 and = w.= we have q=0.86.

Page 153.

If in the beginning of accelerator is satisfied condition (2.304),

which ensures the stability of all particles, then coefficient a

proves to be equal to 2 that it guarantees the work higher than first

region of parametric resonance. Subsequently the frequency of small

decreases. If !-=const. then operating point on diagram 2.11 is

displaced horizontally to the axis of ordinates. But if

(L=Q(0)=const, then operating point is displaced upward and to the

left, passing, as in the case of strong focusing in cosMl,=consit the

region of multiple parametric resonances.

Let us determine a radius of the focused beam depending on the

magnetic field strength and phase volume of beam. Equation (2.299)

can be rewritten in the more compact form, if we use designation

(2.301):
Or M

d-t-- r+ -- - =0. (2.299a)

The first integral of this equation is the following

l J Y rr (2.306)

Taking into account expression (2.297) first integral (2.306) can be

represented in the form
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where
(dr-" 2 F_, 2

-r- ----
U_ t Ldt dt

is the square of the disordered component of complete linear velocity

in the plane, perpendicular to the axis of bundle; dr/dt - radial

velocity; r-- - linear peripheral speed. Let us examine particles

with the given value of integral (2.306). The greatest

removal/distance from the axis they reach particle with the zero

initial moment of momentum with dr/dtfO

r I.

A - greatest value/significance of integral (2.306) for the

particles in the beam. Then a radius of beam R is determined from the

express ion
R l-a~c i2.307

Owr

Let us connect value Iwaic with the transverse phase volume of beam.

Fig. 2.26 gives phase particle trajectories with given value I4Haxc

on plane r, dr/dt. The family of phase trajectories is constructed

graphically, on the basis of the relationship/ratio.,

Page 154. d-=VI-Vr)"
The function

V (r) -- rr ,,.2 2

is the analog of potential energy. The actual values of radial

velocity occur with V(r)<I. With M-0 phase trajectory takes the form

of ellipse. With MOO phase.trajeclories f;11 inside this ellipse. In

accordance with that outlined abov )f itaximum removal/distance from



DOC = 82105208 PAGE

the axis they reach particle with M=0. Thus, for solving the question

about the sizes/dimensions of beam it suffices to explain the value

of the phase volume, occupied by the particles, which do not have

initial rotation.

Let us assume that the beam possesses axial symmetry and its

phase volume in four-dimensional space x,y.p,pp, is limited at the

entrance of the focusing channel by the ellipsoid
a (xI - y2) - b (p'X -; ply) "

- 2c (xp, --ypu) = 1. (2.308)

The projection of phase volume on plane x. p, exists

ax2-bp-2cxp,= 1. (2.309)

Actually/really, point in the curve, which covers projection,

corresp.sds to maximally possible value/significance Px for each

fixed value of x:

dy ' apy

According to the rule of implicit differentiation
p=_ F/OF O4 _ _O F /OF

FY Op. Opi' a"Py '3 , p2

where F(x, y, p., pu)- - left side of equation (2.308). The maximum

impulse/momentum/pulse Px occurs at values Y, P' of those determined

by system of equations
OF =0 = 0. (2.310)

Producing particular differentiation, we obtain

ay + cp, = 0;
cy + bps =0.
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Fig. 2.26.
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Determinant of this system of equations

A =ab-c0.

The volume of four-dimensional ellipsoid (2.308) is equal to

so that A00. Hence y=py- 0 we obtain projection (2.309). Let us pass

in equation (2.308) to the polar coordinates

arl -b (p r- p*) --- 2crp, = 1;

here dr d

Particles without the initial rotation occupy on plane r. p, the
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region
ar2 -  hp! - 2crp.= . 2Jl

area of which coincides with the projected area (2.309). In

accordance with determination (2.2) the invariant phase volume,

occupied by such particles, is equal to

V= - \ p. dr. 2 312)

If the representative points of particles completely fill region

within the maximum phase trajectory, which corresponds I= IaKC.M=O

(see Fig. 2.26), then beam is matched with the channel and its radius

(2.307) is a constant value. Maximum phase trajectory on plane r,

dr/dt is described by the equation of the ellipse

;2 t
=1 (2.313)

1
MaKC 

1
Ma c

and covers the area

I rdr=

Replacing in integral (2.312) radial impulse/momentum/pulse by its

expression through the radial velocity, we obtain

V, = i1L-€ .(2.314)
(WI.

Hence taking into account (2.307)

V. = . - R". (2.315)

Channel capacity with a radius of the aperture opening/aperture a is

equal to

Va ge. (2.316)
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The emittance of beam and the acceptance of channel are connected in

accordance with the phase volume of beam and channel capacity with

relationships/ratios (2.4), (2.127).

To match beam with the longitudinal focusing field it is simpler

than with the strong-focusing channel, since in the longitudinal

field to match it is necessary only the diameter of beam at the

entrance.

If the region, occupied by the representative points of

particles on plane r, dr/dt, does not coincide with ellipse (2.313)

with some value/significance lwac, then beam proves to be mismatched

with the channel. Let us describe around the phase volume of

unmatched beam on plane r, dr/dt ellipse with the relation of

semi-axes bh- The area, included by this ellipse, corresponds to

effective phase volume V..*. True phase volume rotates within the

effective, so that the envelope of unmatched beam oscillates with a

frequency of 2a),. If the ratio of the effective volume to the true

comprises t,>l, then the maximum size of unmatched beam will be-V/,

times more than a radius of matched beam with the same phase volume.

In the presence of high-frequency accelerating field the
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permissible value of the induction of the longitudinal focusing field

is bounded below by stability condition (2.304). Let us examine two

possible versions of the selection of focusing field.

1. Frequency of Larmor precession at each moment of time

coincides with instantaneous value of frequency of small longitudinal

vibrations
WL = (t). (2.317)

With an increase in the energy of particles the required frequency of

Larmor precession will descend and respectively it will be possible

to decrease the induction of focusing field. In this case, according

to expression (2.303), for the synchronous particle
M (t= Q (t). (2.318)

1 2

Since the phase volume of beam (2.315) is invariant, radius of

matched beam is inversely proportional V:r-. Hence

and with an increase in the energy of particles the size/dimension of

beam will grow/rise. This increase/growth is very considerable.
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The frequency of small longitudinal vibrations is proportional

-'p?'/, (1.89); therefore

R
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or in nonrelativistic approximation/approach R W ,! For example, for

the linear accelerator of protons 1-100 [14] an increase in the

radius of matched beam at the entire length of accelerator would

comprise
S .1.9.

Even in the ideal channel without the errors the amplitude of radial

oscillations toward the end of the accelerator would grow almost two

times.

2. Frequency of radial of synchronous particle is constant along

axis of accelerator. Let us assume

OL (0)= (0), (2.319)

th en U r
12 - 2.2)

A radius of matched beam will remain in the nonrelativistic

approximation/approach constant along the axis of accelerator, and

the frequency of Larmor precession will relatively slowly descend

V 2Q((t)=0)7- 1 i+ " (2.321)

The matched beam of relativistic particles retains a constant radius

along the axis of accelerator when w,y=const. If is satisfied

condition (2.319), then

0O()= v0 () , ()" (2.322)

In relativistic regiort of energies the induction of focusing field

with the retention/preservation/maintaining of the sizes/dimensions
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of beam descends considerably more rapid than in the nonrelativistic

(2.321).

The three-dimensional/space period of radial oscillations for

the particles with zero initial moment/torque L,, is determined by

expression (2.302). Let L - period of the arrangement of solenoids.

If L is commensurated with 1i, or more than L., then should be

considered the periodic structure of focusing field,

converting/transferring from the equations with the constant

coefficients for eq :ions with periodic coefficients [60, 72] and

calculating the appropriate functions of Floquet or the matrix/die of

period L. But if L,< L. then nonuniformity in a number of ampere

turns along the axis can lead only to a small "vibration" of

trajectories by disregarding which let us reduce the problem with the

aid of the smooth approximation/approach to focusing examined above

in the stationary field. This case is feasible, in particular, in the

system with drift tubes, if solenoids are placed into each tube.

Actually/really, let L=j3W.
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Then
L

or taking into account expressions (2.318), (2.320)

L I Q
-- - -

LV V2
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The effective magnetic field on the axis of channel, which is

determining the frequency of Larmor precession, is equal

B = unl,

where to u.=4f-10 -' H/m; n - average number of turns, per unit of the

length of channel. Let n, - number of turns per the unit of the

length of solenoid. Let us assume that the solenoid completely fills

the length of drift tube. Then

n -- a'

where a - coefficient of clearance. The magnetic field on the axis of

solenoid, which is determining ampere-turns n.I, is equal
BB0=F--= ono. (2.323)

In each solenoid is scattered the power, equal to

P ; 2. 10 ( b) , (2.324)

where L, - length of solenoid; a - radius of the internal cavity of

solenoid; b - thickness of the lap; p - specific resistance of

lead/duct, 0-m; f - duty factor. As can be seen from expression

(2.324), isolatable power with given B. linearly depends on a radius

of aperture a in contrast to the dissipated power in the quadrupoles

where the latter with the assigned field gradient is proportional to

the fourth degree of aperture.

One of the deficiencies/lacks in the focusing in the
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longitudinal magnetic field is the appearance of large forces of

interaction between the solenoids. Let us examine, for example, force

between two single-layer solenoids of radius R with numbers of turns

N,, N,, distant behind each other at a distance g. Let the lengths of

solenoids L,, L, substantially exceed their radius: L .,>>R. The

mutual inductance of such solenoids is determined by the expression

- L,°N R' (FR2'-- g ). (2.325)

Interaction energy of the solenoids

W =M 1 2. (2.326)

Substituting expressions (2.323), (2.325) into equality (2.326), we

have
W= 1,25. o({R 2-jg-g)R'2B
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The force of interaction between the solenoids exists

Since 1 kg=9.8 N, the force of interaction in the kilograms is equal

to
F 1.28.10I 1 - - RtB. 2. J27)1 R'Z-z

In contrast to the quadrupole lenses where the fields of adjacent

lenses are virtually divided, in the solenoids the fields strongly

engaged, that also leads to the large forces of electrodynamic

interaction. These forces completely are applied to the end

solenoids. For drift tubes, which have adjacent tubes from both
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sides, the forces to a considerable degree are balanced and there

remains only difference force, connected with the dissimilar gap

lengths between tubes. In the long resonator, loaded with drift

tubes, adjacent clearances differ along the length to value

Ag x.

Net force, equal to a difference in the forces, that act from the

side of adjacent solenoids, there is
dF

AF T Ag.

or
A-F = -1,28.1 5 '- AO ( . _ g,1

(P2 -_g vy

For calculating the allowances for magnetic and

structural/design errors in the focusing channel it is expedient to

return to Cartesian coordinates, since in these coordinates equations

of motion are linear. Let us first examine the character of

trajectories in the Cartesian coordinates. Constants of motion

(2.297) and (2.306) in the Cartesian coordinates take the form

-M = XY- Y 4 -- L (X' - Y2') (2.329)

(L. ) + ( dL ' -- () 2 --)) (x 2-- 0Y') - 2( . X d- y d- (2.330)

We will search for the solutions of equations of motion (2.295) in

the form x = A sin (wjl -e E):

y = A cos (o jt -O)

Substituting these solutions into expression (2.295), we obtain the

characteristic equation

0 - 2WLOj - 0.
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Frequency w/ has two values
U), = WL - WIp;

WD - W .

The general solution of equations of motion (2.295) takes the form
x = A, sin (co )t - H) - .-4 sin (w.,t - t4);
y = A, cos (,t -t,) - A., cos (.t -- (). (2.331)

It is expressed the amplitude of oscillations A,, A, through the

appropriate values of constants of motion M, I, after substituting

expressions (2.231) into integrals (2.329), (2.330):

A,- V--2oV2w (2.332)Ao 1- I/I- 2w.M.
- I2Wr 2oW

They are of interest of the projection of trajectories on the

transverse plane XOY. Let us examine two cases: accelerating field is

absent (Q,=O) and particles are accelerated by high-frequency field
(Q, = 0).

Case the first 0

In this case W,=aL; &)1= 2&L; w.=0 and solutions (2.331) take the form
x = A2 sin 82 + A, sin (2wLt + 0); (2.333)

y = A2 cos 62 + A, cos (2WLt -r 8).(
Each particle on plane XOY rotates with an angular velocity of 2WL

6-
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around the point with coordinates x,=Asine,, y0=A~cosG, (Fig. 2.27).

The position of center and radius of gyration depend on initial

conditions. The maximum distance of each particle from the axis is

equal
r~a~ =.41  .4.

According to expressions (2.329), (2.330),

I -2WL d y (2.3341

so that radius of gyration is equal to

Ai= -. x.+Y2. (2.335)

With an increase in the magnetic field the radius of gyration

decreases inversely proportional to the value of field. For the

particles with the zero initial moment of momentum A,=A,. The

trajectories of these particles run through the origin of

coordinates, in other words, through the axis relative to which M=0.
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h-.

Fig. 2.27.
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Since any inscribed angle is two times lower than the central angle,

which rests on the same arc, the angular rate of rotation relative to

the origin of coordinates two times less than 211L, i.e., is equal to

the frequency of Larmor precession.

Second case Z.T = 0.

In this case there is a physically chosen axis - axis of

accelerating field. Each particle rotates with an angular velocity of

w,< 20)L around certain axis which in turn, relatively slowly (with a

speed of W-_=L -w,) rotates around the axis of accelerating field.

For the particles, which achieve maximum removal/distance from

the axis, in both cases of M-0, A,-A. and, according to expressions
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(2.307), (2.332).
p

.41 = All=2

Thus, particle trajectories, which do not possess initial rotation

and which achieve maximum removal/distance from the axis, take the

form
p

x s i [Sn (u), t -1 - u~:- tzl

-: j CcS 1W11 -COb t ,,4 - =:I

Let us establish/install now allowances on an error in the

focusing field. The rotation of solenoids around the longitudinal

axis in view of the axial symmetry of field does not cause the

disturbances/perturbations of motion. Allowance for the parallel

displacement of solenoids relative to longitudinal axis is caused

only by the inclination/slope of field lines in the gaps/intervals

between the solenoids and in the first approximation, it is possible

not to consider it. Basic errors in the focusing field, which call

the essential disturbance/perturbation of transverse vibrations, are

connected with the inclinations/slopes of solenoids from the rating.

For evaluating the allowances let us examine only those particles

which achieve maximum removal/distance from the axis of .channel.

According to expressions (2.307, (2.330),

(02R du _ IQI (x2 _; U._). t . T
dt; *'.dt, 2 -4

Let us differentiate expression (2.337), let uE square and it is

averaged on all disturbances/perturbations and on all phases of

transverse vibrations of particles. We will consider random
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disturbances in all solenoids equally probable and independent

variables. As it is possible to show, utilizing expressions (2.336)

and taking into account the equal probability of all values of the

phases of transverse vibrations,
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For the root-mean-square disturbance/perturbation of amplitude we

obtain the expression

Disturbances/perturbations of coordinate give the contribution to an

increase in the amplitude only in the presence of accelerating field.

Subsequently let us examine only channel with the constant frequency

of radial (2.320). In the larger part of this channel

therefore (6R)= -- I6i).
Wr

Let there be in the channel Nc solenoids. Then toward the end of the

channel the root-mean-square increase of amplitude is equal

(%R) = (6 ). (2.338)

Let us connect 6i in one solenoid with the slant of solenoid to

values Al in each of the coordinate planes and with the instability

of field AB/B. Taking into account that in the larger part of channel



500
DOC 821a5208 PAGE

< l- let us disregard/neglect the difference between values w,

and WL, which considerably simplifies estimation. Then &Iu1z
2
WL, (0

and from expression (2.336) we have

UJLR cOS (
2

OLt -

: -WLRsin (2 j - 8,).

Transverse outlet velocity from the solenoid is connected with the

inlet velocity with the relationship/ratio
.d -- M)oSK-- sinK, (2.339)

where L, - length of solenoid, and

K e-B (2.340)
PSq

characterizes the "hardness" of solenoidLeta,aQ, angles of the slope

of the axis of solenoid to the axis of channel in each coordinate

plane. In the presence of errors a, ar, \K, we have

XL,. = Va-- (Xo-va ) cos(K+AK) + (yo-va,) sin (K-- AK). (2.341)

Deducting expression (2.339) from equality (2.341), in the first

approximation, we obtain

= (I -os K) vu. - Vaysin K- (xo sin K - y0 cos K) AK.

Page 163.

Is averaged the square of the disturbance/perturbation of

transversing speed. Taking into account that

AK NB
x'Yo = 0;

we obtain the equality
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Hence

-2 2.

_ 2 Ai A -R

First term in brackets (2.342) characterizes the external

disturbance/perturbation, which leads to the beam displacement as a

whole, and the second connected with the parametric

disturbance/perturbation, depending on the amplitude of oscillations.

Let us examine the possible parameters of the focusing channel

with the longitudinal magnetic field for the linear accelerator of

protons. As the initial data let us accept the parameters of the

proton accelerator 1-100 [14]: )2 m; W.=2.7.10-3: W,=70O keV; W,=IOO

MeV. At the entrance 9(0)/w-9.35-10'1 . Let us assume in accordance

with expression (2.319) WL(0)=Q(0) and let us accept w,=const at the

length of accelerator. According to formula (2.320), w,= 6 .6 0.10".w. At

the output of the accelerator [see expression (2.321)3 we have

wL=0,8 Q(0) From formula (2.294) it follows: B,.,,,=18400 G; B... =14700 G.

With the coefficient of clearance a-0.25 the fields, created by

solenoids in drift tubes, must be equal to: Bo,,=24500 G; B,,,,=19600

G.
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Let us accept the phase volume of beam equal to l,=0.1 cm*mrad.

With this phase volume a radius of matched beam in accordance with

formula (2.315) will be R=0.22 cm. As it will be shown in the

following chapter, during the numerical estimation of the matched

initial conditions for the strong-focusing channel of the same

accelerator, in the system of quadrupole lenses R, ).35 cm; R.=0I5

cm. Hence it is apparent that during the optimum identification of

parameters of both focusing channels the size/dimension of beam in

the longitudinal magnetic field proves to be smaller than the maximum

size of beam in the strong-focusing channel.

The hardness of solenoids (2.340) in the beginning of

accelerator is equal to K=1.15. We have SnA 2=0,95z [ If we assignA K2

-B = then the divergences of field from the rating in effect

will not agitate trajectories. The basic perturbing factor is

connected with the inclination/slope of the axes of solenoids. From

formula (2.342) we will obtain

(AR) ; 2 N (A . (2.343)
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Analogous relationship/ratio for the strong-focusing channel took the

form (see S 2.8)

(AA - 0,83 -"-.

A number of solenoids is equal to the doubled number of periods of



DOC = 82105208 PAGE

focusing field. An identical increment in the amplitude in both

systems of focusing we will obtain with Al 0.3 mm. This allowance

completely can be returned to the mechanical adjustment of the axes

of drift tubes, so that it proves to be six times of wider than the

appropriate allowance with the strong focusing. Thus, the adjustment

of drift tubes with the solenoids considerably is facilitated in

comparison with the adjustment of the tubes, which contain quadrupole

lenses.

For evaluating the dynamic forces, experienced/tested by drift

tubes, and dissipated power let us assign the following

sizes/dimensions, entering formulas (2.324), (2.327), (2.328): a = 1 cm;

b = 5 cw g = 2 cawR 3.5 c. Then the force, which acts on the end solenoid,

is F-470 kg, and net force, which acts on internal solenoids, 4F-24

kg. Let us accept the duty factor of window with copper equal to

f-0.2. In this case the first solenoid of accelerator isolates power

P, = 88 kW, and the latter - P.O. =600 kW. The supply of solenoids by

direct current without the use/application of a deep cooling in this

case virtually is eliminated, hook as it is impossible to lead from

drift tubes the power indicated.

Accelerator 1-100 works by narrow pulses, which makes it

possible to utilize a pulse supply of magnetic lenses. With the pulse

supply the dissipated power can be lowered more than 100 times.
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Therefore let us examine the possibility of the supply of solenoids

by pulse current. This analysis is interesting and because the

general/common/total relationships/ratios remain valid also with the

pulse supply of quadrupole lenses. Let the pulse current, which feeds

lens, be obtained by resonance capacitor discharge through the

valve/gate to the winding of lens. Let us assign two initial values:

with the duration of the half-wave of current T and with maximum

voltage across capacitor V. The inductance of winding is equal to

L =k: ,  (2.344)

where N - number of turns in the winding, and coefficient k depends

on the geometry of winding. In particular, for the solenoid we have

.4
D-L,

(Lc - the length of solenoid). Values A, D depend on a radius of the

internal cavity a and the thickness of the lap b;
9 b 1

A: _ , --- - D;:t(a- Wb.
A---- ;
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During the capacitor discharge C to the inductance of winding L is

fulfilled relationship/ratio CV2=LI, moreover T=nI LC.Hence taking

into account expression (2.344) we obtain

T tkN

According to expression (2.323),
NJ Boic,.

NI = BL
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Thus,
I 2.4

The amplitude of coil current is equal to

1= A' kL.. 1 ,14;

Value of the discharge capacity

:18'ki 12. -17)C = 2 .

Hence it is apparent that at the given values of T, V, B. and the

geometry of windings a number of turns, the amplitude of current and

the value of discharge capacity for each lens are determined

unambiguously. For the majority of drift tubes D L,. then

kL .4 = const. so that a number of turns in different solenoids does

not depend on their length. Amplitude of current and capacitance

value directly proportional to the length of each solenoid. An

increase in the magnetic field decreases a number of turns and

respectively increases current and discharge capacity.

The permissible working stress/voltage for the solenoids, placed

within drift tubes, can be accepted equal to V=l.5 kV. Let the

half-period of discharge be T-600 us; this provides the necessary

flat/plane part of the current pulse for the proton beams with a

duration of 10-40 us. In the parameters indicated the amplitude of

current will range from 0.9 in the beginning of accelerator to 12.2
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kava end/lead. Necessary capacitance value is changed from 113 in the

beginning to 1560 gF at the end. The available capacity of

capacitors/condensers will be 134000 uF. It is obvious that the use

of a similar power-supply system for the proton linear accelerator to

the energy 100 MeV is inexpedient.

Thus, in spite of the explicit advantages of the system of

focusing by longitudinal magnetic field, the large dynamic forces,

which appear between drift tubes, and the difficulties of the

realization of heat withdrawal or creation of pulse supply force at

present to turn from the use of this system to proton linear

accelerators on the middle of energy at the wavelength of

accelerating field 1.5-2 m.
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An increase in the wavelength of accelerating field with the

fixed/recorded value of specific acceleration proportionally

decreases, according to expression (2.304), the minimally allowed

value of Larmor frequency and respectively the induction of focusing

field. In this case power consumption per the unit of the length of

accelerator and the dynamic forces between the solenoids descend

inversely proportional to square the wavelengths.
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S2.10. High-frequency quadrupoles.

Longitudinal and lateral stabilities of particles in the linear

accelerator without the external focusing fields are incompatible

only when accelerating field is axial-symmetrical traveling wave. In

S2.1 it is explained that at the sufficiently low absolute values of

synchronous phase the accelerating clearances between drift tubes

focus particles. As long ago as 1953 Ya. B. Faynberg (73, 74] showed

that reaching/achievement of the simultaneous stability of

longitudinal and transverse vibrations possibly also in the case when

synchronous phase periodically reverses the sign along the axis of

accelerator.

In 1956 V. V. Vladimirskiy [34] proposed the method of

guaranteeing longitudinal and lateral stability due to the failure of

the axial symmetry of high-frequency field in the accelerating

clearances. In the form of an example work [34] examines the

introduction of "horns" to the accelerating clearance (Fig. 2.28a).

Horns create the electric field whose transverse components are

analogous to the field of electrostatic quadrupole lens. The

longitudinal component of accelerating field is utilized for the

particle acceleration, and transverse components - for the focusing.

A deficiency/lack in a similar construction/design is the decrease in

dielectric strength, caused by the introduction of horns to the

accelerating clearance.
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Fig. 2.28.
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V. A. Teplyakov [35, 36] investigated the system, deprived of this

deficiency/lack. He proposed to make aperture opening/aperture in

drift tube not circular, but rectangular, moreover each subsequent

tube to turn on 900 by relatively by preceding/previous (see Fig.

2.28b). However, such a idea was expressed later by Fer and Lapostoll
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[37]. One additional version, proposed by V. A. Teplyakov, it is

shown in Fig. 2.28c; the form of horns in Fig. 2.28c it is changed in

comparison with the form in Fig. 2.28a how is reached the best

configuration of the focusing components of field [75).

Let us examine field in the clearance with the more general case

of symmetry, than axial. Let the potential of field have two planes

of symmetry XOZ and YOZ:
U(x, y, z)=U(-x, Y' z)=U(x. -y.." 23 4,

the transition from the point with coordinate z to the point with the

coordinate - z with the simultaneous rotation on 90* in the

transverse plane reversing the sign of potential, without changing

its value
U (X, y. Z) -U -y. X, -- )(2.349)

Point z=0 - the geometric center of clearance. The conditions of

symmetry (2.348), 2.349) satisfy fields in all clearances, shown in

Fig. 2.28.

We will be restricted to the nonrelativistic region of energies.

Then the equations of motion of particle in the accelerating gap take

the form
daz

E, cos c)t;

dly e Elcos wt: (2.350)

d z E, cos (t

-- ~ ~ ~ ~ ~ i -'Wo-I I II I
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Subsequently let us examine the motion of paraxial particles. Let us

expand the transverse components of field in the power series

E,, ,(x. y, z) = E,.- (0. 0,

-- -j -(0. 0, X) - -' I . : , 0. ...

and let us hold down/retain the linear terms of resolution. Then

equations (2.350) for the transverse coordinates prove to be linear.

From the conditions of symmetry (2.348) we have

E,(0. 0, z)=E (0. 0. z)=0.
dE. OE (2.351)o1 (0. O. )= = (0. O. z) =-O.

Equalities (2.351) follow directly from those considerations, what

derivative of even function - function is odd.
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From the condition of symmetry (2.349) we have

dE (0 0 z) - (0, (2.352)
dEz dE, ,-----(0, 0, z) = - (0, 0, -z). (2.353)

For simplification in further recordings all functions, undertaken on

the axis, f(0, 0, z) let us designate f(z). The equations of

transverse motion (2.350) can be now represented in the form

;;x - (z) cos Qt. x;
dt

2  m0  Ox
(2.354)

d'y e.Lo" (z) cos o*. y.
.dy
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Let us introduce the function

I d~ 0 E~G (x , y , ) = L -, - x, X , z)- o (x , Y .z ) j (2 .355 )

Since the derivatives of the components of field are connected with

the general/common/total relationship/ratio

0E. . Y E:

ox UY uZ
then

dEZ _ -L...G.- (2.356)

TV 2 Oz

In the axisymmetric field G(x, y, z)90. Equalities (2.356) generalize

expressions for forces (2.40) for a broader class of symmetries

(2.348), (2.349). First terms in the right sides of equalities

(2.356) cause the defocusing of particles in the accelerating

clearances. Second terms, which are absent with the axial symmetry,

can the principle provide strong focusing. We will consider the

stability conditions of longitudinal vibrations as those carried out

and let us find the requirements, presented to function G(x, y, z),

which ensure the stability of transverse vibrations.

Let us expand functions E '(z) and G(z) in Fourier series in the

period of the accelerating structure L. Function ----(z), according to

expression (2.353), odd.

AE, 2n
Z-- = ( A. sin- z. (2.357)

aim|
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Function G(z), as this follows from equalities (2.352), (2.355), even

= B. c()2s (2 1

Let us assume that the accelerating clearance on its action is

equivalent to thin lens. Then particle displacements at the gap

length are not changed, but transversing speeds obtain the increases

5A xx (Z C s-- -- X .\ -) (Z~COSu~t(Z)

L

\ -- = e . . (Z) COS W1 I:)
dT m 0  " -tu

L

Let us disregard/neglect the effect of a change in the particle speed

at the gap length, after assuming

Let t (z)= i - -

b,= . -z- (Z) cos W (:) d::
2rn,)v z

L

b2 . MO G (z) cos (t (z) dz.

L

Then, substituting expressions (2.356) in integrals (2.359), we

obtain

A dx = bxx;Wu (2.361)
A11 = by,

where b=b1 -- b.; b,=b1 -b.-. (2.362)

Let us introduce series/rows (2.357), (2.358) into the expressions

LJ
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for b,, b,. Taking into account formula (2.360)
ekk

b, = A sin 4;

e_ . B4 c osq.

where k - multiplicity of the period of the accelerating structure;

L=kA3X. As a result for the refractive indices we obtain the following

express ions

b _ e;. sin q - B k COS (f

b . -.4 s n2.Bby =2m-- \ T sin (v - Bh, cos
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Let the period of focusing field consist of two periods of

accelerating structure (S=2L) and contains two accelerating

clearances. In each following clearance the electrodes are turned on

900 relative to preceding/previous, so that planes XOZ and YOZ

transpose. The matrix/die of the period of focusing field can be

represented by the product

T= H1/FHrH.

Matrix/die T corresponds to the period which begins and is terminated

in the middle of the idle gaps/intervals between the clearances; H -

matrix/die of the idle gap/interval

I kX

H=(C)

In this case it is assumed that the high-frequency field is

concentrated in the thin clearance. r and f matrix/die of the

adjacent clearances

= : by

The multiplication of matrices/dies gives

COSJA= +I -(. l)-'

Let us replace refractive indices with their expressions (2.363):

cos I- -e--- Ah sin 4p Ahsinp -

I eksk' Ik)' BA )(
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Let us examine the components/terms/addends, entering the right

side of equality (2.364). Regarding

, . -= T - (z) sin z dz.
CZ

Let us take this integral in parts:

L

2 2 E, (z) sin 2TRz 4.ik E 'kz

= L LZ E (z)cos - .

L ~ L

The first term at both ends/leads of the interval of integration

becomes zero. The integral, entering the second term, according to

expression (1.11), takes the form

E, (z) cos 2 1 -d=E°TL'

where E. - middle field; T - factor of transit time.
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Hence Eor
A,= 4a _E.

Since Ak<O and, therefore, for the particles, close to the

synchronous, ,,sin%>0. second term in the right side of equation

(2.364) determines the defocusing action of high-frequency field.

Third component/term/addend decreases cosm and, therefore, is

described the focusing action of field in the clearance. Third
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component/term/addend depends on the phase of particle and middle

field, which in principle differs the focusing in question by

external quadrupole fields. Into all members of expression (2.364)

enters the combination of the parameters

i 4k.

Replacing A.. we obtain
. Alai;

= t -- 7-

where W,- current energy of synchronous particle; A~W'.-

maximally possible energy gain of particle in the period of the

accelerating structure

-W.a = eEOL.

Coefficient T can be also determined by the equality

y = -- sinf.

where - - factor of defocusing (2.170). In further more conveniently

to operate with coefficient q, since it does not depend on the phase

of particle, which simplifies the comparison of the

components/terms/addends in the right side of expression (2.364).

Regarding coefficient Bi, it is equal to

=2 G(z) cos L dz. (2.365)

ce E.- average/mean amplitude value of the longitudinal component of

high-frequency field at the length of the accelerating clearance g:

Eg = I E,(z)dz.
L

Then gE,=LEO. Expression (2.365) can be represented in the form

SGcos-zdz
B \G2 2 L
BA= G -' G(z) dz-

.
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Value

- (2.366)
\G dz
L

is analogous to the factor of transit time and in the narrow

accelerating gaps is close to unity just as T. For the tubes with the

rectangular apertures in the first approximation,
Tg _ :

T = tg a '

where a - coefficient of clearance (1.23). For horned tubes Tg2 T.

since function G(z), as function E(z), is approximately constant at

the gap length. The dimensionless quantity

Ks I"_ G(z)dz (2.367)

characterizes the geometry of high-frequency field in the clearance.

In the axisymmetric field Kg=0. Parameter Kg is uniquely determined

by the configuration of field in the clearance and does not depend on

the length of the period of the accelerating structure, since

integral (2.367) actually is taken on the section, occupied with

field. During the calculation or in measurement Kg it is convenient
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to use the relationships/ratios

~ d - '~dos dz.
1 E. dE

L L
Thus,

Hence we obtain the ratio of coefficients, entering expression

(2.364):

Equality (2.364) can be written in the form

cos ti I-rI sinp I 1'fr s mn cp  -fTI C2os

Parameter ,1 is low in comparison with unity. As are shown detailed

calculations, if are satisfied the conditions
1 l, KgT( a 2 

't 1 I;X~ ~ (, -- < - TO < 1,

then in the term, determining defocusing, it is possible to disregard

the component/term/addend, proportional 2. Then

cost = 1- sin - - .1 - .) 2Cs 2" (2.368)
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Let us require the retention/preservations/maintaining the

stability of all trajectories in any phases of particles in the

limits of separatrix. For this must be fulfilled the inequalities
.. ~ I rj 2 KjTg 2 2

I - flsin2,--w- K2aaT- O cos2f.< 1

t + TI sin (p - Ti -- a N' Cos, F >  - .

From the first inequality follows
, IR2q. I A'" h 'RT I ,
cos2W 2 1 #1.,T )2.369)
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From the second inequality we have

Kg~2 2-rj si~j
.jr < 2 (2. ,7O

Condition (2.369) determines the maximum permissible

value/significance of synchronous phase 'T with given ones ,?.2 A'

or the minimally allowed value of coefficient of asymmetry of field

K, with given ones Ps,11,01 Condition (2.370) is given upper boundary

for the coefficient of asymmetry Kg Basic practical

value/significance has condition (2.369), since to obtain high values

K is difficult, and to have the low absolute values of synchronous

phase is disadvantageous due to the decrease of capture region.

Work [37] gives the results of modeling of clearance with the

rectangular aperture openings/apertures on the electrolytic bath in

the approximation/approach of two-dimensional problem. According to

the measurements of field distribution were calculated'the

coefficients of asymmetry K. Some results of measurements are given

in Fig. 2.29. Here a - narrow side of rectangular aperture; b - wide

side. As can be seen from graphs/curves, Kg-<I.
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Fig. 2.29.
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Particle focusing by the high-frequency quadi-upoles possesses

advantages, which consist in large structural/design simplicity of

drift tubes, possibility of decreasing the diameters of tubes (since

within the tubes it is not necessary to place magnetic lenses), in

the absence of the complicated and bulky equipment of the supply of

lenses. However, in the short-wave proton accelerators (X=1.5-2 m)

focusing with the aid of the rectangular aperture openings/apertures

leads to the inadmissible decrease of capture region. Thus, let us

assume, K,= 1; -T I Then with W-2 m; ax=0.25; k=1; A3-0.04 and E,=16

ky/cm we obtain Ti =0.53 and condition (2.369) will lead to the

inequality ,gqI<,1

Cos 4.~

or T.1<3. This value is so low which is necessary to consider the
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effect of a change in gap velocity. Taking into account the effect of

an increase in velocity up. it will increase

approximately/exemplarily doubly. From an increase in the energy of

particles parameter i falls, which decreases upper threshold 4,

Hence it is apparent that in short-wave proton accelerator the effect

of high-frequency focusing virtually is absent. Expansion of capture

region with the particle focusing with the aid of the alternately

oriented rectangular apertures can be achieved/reached by an increase

in parameter 'n or decrease of the coefficient of clearance a. Since
2.k 2 T eEo;

(2 moo

then increase of 1 is possible with: a reduction in the exit energy

of particles; an increase in the wavelength of accelerating field; an

increase in the energy gain per unit of the length of accelerator;

the acceleration of polyvalent ions with the increased ratio e/m..

Let us note that with the very low energies of particles and upon the

high specific acceleration exactly becomes difficult the focusing by

magnetic quadrupoles. If middle field and gap lengths are

fixed/recorded, thenE,=.; _n-ka Therefore an increase in the

wavelength makes it possible to substantially expand capture region

with an insignificant increase in the field in the clearances.

Focusing with the aid of the rectangular apertures proves to be most

effective in the long-wave accelerator of polyvalent ions.

The coefficient of asymmetry Kg can be more than unity in the
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accelerating gaps with advanced electrodes (see Fig. 2.28c). V. A.

Teplyakov obtained disregarding small clearances between electrodes

advanced into the accelerating gap the following formula for the

coefficient of the asymmetry

, Aa tgaa 9~L
IO(2. r°

where r. - radius of drift tube (distance from the axis to the

electrode).
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At the low values of the argument of the modified Bessel functions

1g , 0

Hence
6 61 . ox"2
613- - tgta ro

The focusing action of such clearances with a-const) and with the

decrease of the diameter of drift tubes (which in turn, is connected

with an increase in the gradient of the focusing components of

field). Clearances with the advanced electrodes can solve the problem

of particle focusing of high-energy during the guarantee of necessary

dielectric strength.

From that presented it is evident that the beam focusing in the

linear accelerators with the aid of the high-frequency quadrupoles in
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a number of cases is promising. This method of focusing requires

further investigations and searches for the most optimum

configurations of the accelerating structure.
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Chapter 3.

Transverse vibrations of particles in the beams with the high density

of space charge.

S 3.1. Formulation of the problem. Separation of variables in the

equations of motion.

In the first chapters was examined the particle motion in the

assigned applied fields (accelerating and focusing) without taking

into account electrical interaction of particles. It was assumed that

each particle moves in the manner that as if other charged/loaded

particles in the channel there does not exist. This assumption is

admissible, if the density of space charge in any beam section is

sufficiently small. However, the estimation of the possibility to

disregard/neglect the effect of Coulomb interaction of particles can

be given only within the framework of the more general theory, in

which this effect is considered.

"Single-particle" theory made it possible to determine the

parameters of accelerator, in which is provided necessary stability
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of motion of particles. But even when current density in the

accelerated beam is negligible, single-particle theory cannot answer

many questions, which appear during the design of accelerators.

Taking into account the phase volume of beam as the measure of the

scatter of particles for position and velocities, we is exceeded the

limits of single-particle theory. Introduction to the calculations of

the value of the phase volume of beam made it possible to calculate

the envelope of the trajectories of the collective of particles,

i.e., to determine the sizes/dimensions of beam in the focusing

channel and to answer a question about that, will pass this beam

through the focusing channel without the essential loss of intensity.

Was determined the optimum configuration of beam at the entrance of

channel, i.e., were found the matching conditions of beam with the

channel. It turned out that one of the most important characteristics

of the focusing channel is its capacity.

Were explained the supplementary requirements for the sources of

particles, connected with the fact that the phase volume of beam must

not exceed the capacity of the focusing channel; an increase in the

intensity of beam must be accompanied by an increase in the phase

particle density.

Page 177.
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However, for solving the questions about the limiting current of

the beam of the accelerated particles, about the identification of

the parameters of the accelerator, designed for the acceleration of

beam with the assigned intensity, about the agreement of intense beam

with the channel and others of the theory presented it is

insufficient. Are necessary the relationships/ratios, which consider

interaction of the charged/loaded particles in the beam. Thus,

further fundamental withdrawal/departure from the single-particle

theory is connected taking into account the forces of interaction

between the particles of beam, i.e., taking into account the electric

fields of all charged/loaded particles.

The direct method of calculation of particle motion taking into

account their electrical interaction consists in comprising as many

equations, as particles in the beam, after introducing into the

examination all two-body forces, and to solve equations together,

after assigning the totality of initial conditions for the particles

of the beam. It is obvious that the solution of this direct problem

is virtually unrealizable, since a number of particles in the beam is

too great. Therefore it is necessary to deal concerning the model of

bundle, limiting a number of particles with the reasonable value in

accordance with the storage capacity of electronic computer. This

posing of the question proves to be already approximate. But also in

this case the substantiation of sufficiently general/common/total
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conclusions/outputs requires obtainings of many particular solutions

that it entails the expenditure of too long machine a time. Hence it

is apparent that the possibilities of direct method are very limited.

Another method lies in the fact that the superposition of the

fields of a large number of discrete/digital particles to replace

with the field of the continuous space charge. Then is examined the

motion of one particle in the assigned applied fields and in the

field of the space charge of beam. After considering the distribution

of initial conditions, i.e., the phase volume of beam, it is possible

to find envelope of particles and to answer other interesting us

questions by the methods, analogous to those described. However, this

method requires correct approach. It is not possible to compose

equation of motion, on the basis of which predetermined density

distribution of charge, since the obtained solutions can prove to be

by such, with which the assigned charge distribution (taking into

account which it was determined solution) is not retained. Such

solutions are internally contradictory and in the general case can

lead to the quantitative and qualitative errors. Therefore charge

distribution must be defined from the simultaneous equations of

motion and field just as particle trajectory. Obtained from the

totality of the equations of mechanics and electrodynamics the proper

field of beam is called self-consistent. Self-congruent field causes

this particle motion, what determines precisely this field
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distribution.

Are possible two formulations of the problem. If is assigned

initial charge distribution, then problem consists in determining of

particle trajectories and change of the charge distribution in the

time, which corresponds to the obtained totality of trajectories

(unsteady problem).

Page 178.

In the second setting initial charge distribution is not assigned;

problem consists in the determination of stationary charge

distribution (not depending clearly on the time) and in the

calculation of particle trajectories, at which is supported this

stationary distribution (steady-state problem). Although the

nonsteady-state problem is more interesting, its solution for the

cases given below is not yet found. Therefore subsequently let us

examine only stationary problems.

The radio engineering requirements, presented to the vacuum in

the linear accelerator, are such, ,hat the mean free path of

particles exceeds the length of accelerator or compared with it.

Therefore let us disregard/neglect particle scattering on the

residual gas.
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The general/common/total formulation of the problem of

determining the self-congruent field disregarding by the effect of

the collision of particles and by the effect of radiation/emission

consists of the following, n ix. u. : P. P:, ri - function of the

distribution of density of particles in the six-dimensional phase

space canonically conjugated/combined the variable/alternating r, P.

In order to find a number of particles per unit of volume of the

usual three-dimensional space x, y, z, let us integrate the function

of the distribution of phase density according to all possible

particle momenta at the given values of coordinates. Hence the

density of space charge is equal to

Q(x. y, t)=e \n(r, P. t)dP. (3.1)

where

dP =dP. dPdP,.

Current density is determined by the integral

6(x, y, z, t) =e v(r, P, t)n(r, P, t)dP. (3.2)

During the calculations of current density (3.2) let us

disregard/neglect the transverse components of current and the

scatter of particle speed, connected with the longitudinal

vibrations. Then

6 (x, y, z, t) e a ,Q (x, y,nz,j/.

Phase density in the space of the canonically conjugated/combined
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variable/alternating satisfies Liouville theorem dn/dt=O, or

(in Oni Ox an JP.,

Connecting to this equation the canonical equations of motion and

equation for the scalar and vector potentials of field, we obtain the

complete system of equations of self-congruent field [79]. Equations

of motion can be written in the form

v gradH, -- gradH.
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Index P with the gradient means that differentiation is conducted

according to the components of generalized momentum; H - Hamiltonian

of the particle

H=$-''.

Hamiltonian does not contain the explicitly vector potential of

field, but, as it is possible to show [21],
dA

gradH =egradU -e[v.rotA l --e .

where U, A - sums of the corresponding potentials of applied fields

and proper field of beam. This expression directly follows from

formulas (2.1), (2.5). The system of equations of self-congruent

field takes the form
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- -- vgradn-- rad H rad n (1:

v = radpH:

-_- = - rad H;

H = tnc- - eL:

XL=- \' i P:

AA= -ue \ vnd.

We will consider that the particles move in the medium, which does

not contain dielectrics,

I0 =. IH0

Key: (1). H/rn.

System of equations (3.3) has countless solution set. Let us

assume that are known the expressions for any first integrals of

equations of motion

I (X. , Z. Px. P. P:, t) = const:
l(x. y. z, P,. P,I, P:, t) = conmt.

Then arbitrary function from these constants of motion will give

solution for the function of the distribution of the phase density

n (X, Y, z , Pz , PY, P., t) =- f (I I 2 .... '), . (3.5)

and, electromagnetic fields obtained, on the basis of this function

of distribution of phase density will be self-consistent.
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__ _ _ __ _ _ _ __ _ _ _,
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Actually/really, first equation (3.3) is satisfied with the arbitrary

function f
,i _ )of dl O dl. ,- -. -- -. . . -

Y: i * it OI dt

since, regarding constant of motion, dI/dt=O. Latter/last three

equations (3.3) are satisfied inasmuch as along the condition

constants of motion are obtained in the field of forces, assigned by

these equations.

Expressions for constants of motion contain the unknown thus far

potentials of electromagnetic field. Let us examine a special case,

namely let us assume that the Hamiltonian

H =$ - e (U -t- U)

is constant of motion; here U - potential of the proper field of

beam; U, - assigned potential of applied field. If external field in

the course of time does not change, then it is possible to assume

that and the potential of the proper field of beam also clearly on

time does not depend and, consequently, also Hamiltonian as a whole

does not depend clearly on time. According to expression (3.5), it

can assume

n=f(H),

where f - arbitrarily assigned function of the distribution of phase

density. Then equation for the scalar potential is reduced to the

following:

e f(I+eU+eU,)dP,

= -k
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but for the vector potential, according to expression (2.42), we will

obtain

A= V.

From the latter/last two equations are determined the potentials of

self-congruent field with any assigned distribution function.

The equations of motion of particles in the strong-focusing

linear accelerator taking into account the field of the space charge

of beam are obtained in chapter 2 and take form (2.50). On the

assumption that the amplitude of the longitudinal component of

accelerating field does not depend on transverse coordinates and that

the proper field of beam is absent, transverse and longitudinal

coordinates were divided. However, when the proper field of beam is

present, the problem in principle becomes complicated and in the

general case is. reduced to the determination of the function of the

distribution of phase density in the six-dimensional phase space.

However, preliminary estimations show that also taking into account

space charge the problem can be simplified. In the process of phase

stability the beam decomposes into the clusters. The aperture of

channel and, therefore, the transverse sizes/dimensions of clusters

is substantially less than pX.
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Since the strong focusing virtually does not limit the selection of

synchronous phase, the latter is selected so as to ensure the

sufficiently wide capture region of particles on the phases. In this

case the longitudinal length of each cluster is from 1/4 to 1.3 AX.

Thus, the longitudinal sizes/dimensions of clusters exceed transverse

ones. In the clusters, elongated along the longitudinal axis, the

transverse components of the proper field of beam weakly depend on

the length of cluster. Let us show this based on the example of the

evenly charged/loaded general ellipsoid. The approximation of

clusters by the evenly charged/loaded ellipsoid was previ usly used

in works (116.3] for the evaluation of the effect of the pushing

apart Coulomb forces in the beam. rX, ru, ]- semi-axis of ellipsoid,

moreover the longitudinal semi-axis ; is more than transverse

semi-axes r.,ru, The potential of field within evenly charged/loaded

general ellipsoid [80] is equal to

U = __R [ M (x . f _ \ ( _. , , . ( _ ) :

where

N r. (rx2-ry) 2 ds4 (, 5s)3 -r,(6+s) t1 2 -s 5)

Fig. 31 shows the dependence of coefficients M, N on relation r1./

From the graphs/curves it is evident that coefficient M weakly

depends on relation r1/I and it is close to unity up to comparatively

large values r./. Coefficient N depends on relation r,/1 is even less
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susceptibly/critically. Up to I=2rx with the accuracy better than

5o/o coefficient N remain equal to value
,V=Ir x - r y

'2 r. - r.

Therefore, examining transverse vibrations, we can assume l=0 i.e.,

disregard the decomposition/decay of beam on the clusters. This gives

the overestimation of Coulomb forces to 10-15o/o. Apparently, in

actuality error is still less, since was not considered the effect of

the metallic walls of channel; furthermore, Coulomb pushing apart

greatest with the low energies and should be considered also the

effect of the particles, which proved to be out of the separatrix. If

we consider clusters infinitely long, then thereby we is disregarded

by the longitudinal vibrations of particles and at our disposal

remain only the equations of transverse vibrations. The task of

determining the self-congruent field is reduced to the

four-dimensional. In this examination all particles are assumed to be

synchronous ones and it is not possible to determine the form of

cluster from the complete six-dimensional task taking into account

the dependence of the defocusing action of high-frequency field on

the phase of particle.
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Let us note that the difference 1-M susceptibly/critically

depends on the relationship/ratio of the transverse and longitudinal
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sizes/dimensions of cluster. During the evaluation of the effect of

longitudinal Coulomb pushing apart on the process of phase stability

it is important to consider both the length of cluster and its

transverse sizes/dimensions, since the longitudinal component of the

natural field of beam depends substantially on these

sizes/dimensions. Therefore first let us examine space-charge effect

on the beam focusing let us determine the transverse sizes/dimensions

of beam disregarding by the decomposition/decay of beam to the

clusters. In (hapter 4 we examine space-charge effect on the phase

stability, being assigned by the transverse sizes/dimensions of beam.

Latter/last task can be brought to the two-dimensional, if we

assume that the longitudinal component of Coulomb field of the bundle

does not depend on transverse coordinates. In the case of ellipsoid

this by itself the cylinder of finite length, the assumption

indicated is fulfilled only approximately; however, with the

satisfactory accuracy. A relative difference in the longitudinal

components of field on the axis and on the periphery of the evenly

charged/loaded cylinder of finite length, elongated along the

longitudinal axis, does not exceed 40o/o on the edge of cylinder and

rapidly it decreases with the departure/attendance from the edge.

Dependence on a radius of the longitudinal component of the proper

field of the evenly charged/loaded circular cylinder with

length-diameter ratio, equal to three, it is shown in Fig. 4.2.
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Fig. 3.1.

Page 183.

S 3.2. Equations of transverse vibrations in the strong-focusing

channel during the "microcanonical" distribution of phase density.

With the linear approximation of the focusing fields of the

equation of transverse vibrations (2.50) they take the form
de G z E-z, t) x 0 (x, [/, z):

ee M,dy= ev- G (z)x - - (Z' 0y- L- (X. Y, Z).

According to the simplifying assumptions accepted, the longitudinal

coordinates z of particles are connected with the current time t with

relationship/ratio

z (t) v,(t)dt.
tie
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general/common/total for all particles so that any of these

variable/alternating can be selected as the independent variable.

Equations (3.6) can be obtained from the canonical ones, if to

the latter corresponds the Hamiltonian

H= - .P  ev,G (z) + + 2i "-aE (z) -- - - U (x. y, Z).
2moy V2 L

In the linear approximation/approach to focusing fields A. = .4, 0

and transverse particle momenta are canonically conjugated/combined

with the transverse Cartesian coordinates. As can easily be seen,

Hamiltonian depends on time, so the gradient of focusing field -

function of longitudinal coordinate. Therefore in the strong-focusing

channel Hamiltonian is not constant of motion. Let us note that in

this case the dependence of gradient - on the independent variable

is not so essential: because of the smallness of the factor of

defocusing the gradient of accelerating field always can be with a

sufficient accuracy replaced with the value, averaged on the period

of the accelerating structure and, therefore, which does not depend

on longitudinal coordinate. The fact that in the strong-focusing

channel the Hamiltonian is not constant of motion, complicates task.

To compose the first integral of equations of motion (3.6), which

occurs with any distribution functions, is impossible. This
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difficulty can be overcome, after averaging equations (3.6) for the

period of focusing field. The Hamiltonian of the averaged equations

would not depend on time. However, "smooth" approximation/approach

gives satisfactory accuracy only at the relatively small frequencies

of transverse vibrations and does not befit, for example, during

calculations of the matching networks. Therefore let us first solve

task in the general view, without resorting to the averaging of the

equations of motion.

For one important particular case of the distribution function

it was possible to indicate the integrals of motion of unaveraged

equation [81].

_____ --- Let us pass for the convenience in equations (3.6) to

the independent variable r (2.52):

d2.vS OU 
Y,-- 1 +  Q X (T) X + g0- - -j = 0;
d2u _ 2_d_a~g ,eS' aU'

Let us assume that there is such-stationary distribution of phase

density during which the components of the proper field of beam

linearly depend on the corresponding transverse coordinates. In this

case equations (3.7) will prove to be linear, with the divided

variable/alternating it is possible to write the fundamental pairs of

solutions in general form, without knowing the

concrete/specific/actual dependence of the potential of proper field

on the coordinates

X () - cr () e* ;(3.8)
Xv (r) - (v v) e* '* M.
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In accordance with the condition for standardization (2.65)
d14V _ I . a~ I

d- - ; - (3.9)
0Z Gyj

Real solutions will take the form
x (T ) = A a' .( ) co s I V, ( ) + t ];;3 . 0(3.1 o)

y (T) = Ama (r) cos Im () + '!.

Values .4=, A, , - depend on the initial values of
dx 4,

variable/alternating x, y , and they remain constants in the

process of motion, i.e., are constants of motion. According to

expression (3.5), phase density is an arbitrary function of constants

of motion. Let us assume that the phase density does not depend on

the phases of transverse vibrations e), o:

n = f (A., Am).

This means that at any point of channel and with any available

amplitude of oscillations there are particles with all possible

phases of transverse oscillations. Eliminating phases from solutions

(3.10), we obtain expressions for two constants of motion

A'- (a. x)2 +X 2;(.
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It is assumed that .,U assigned functions of the independent

variable. Let us introduce new constant of motion

F = A, + A2. (3. 12)
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Since values A,, A. characterize the intensity of transverse

oscillations in two mutually perpendicular planes, constant of motion

F in a sense is equivalent to the integral of energy. Let us show

that there is such dependence n=f(F), with which the equations of

motion (3.7) actually/really prove to be linear and with the divided

variable/alternating. This takes place when for all particles in the

beam constant of motion F has one and the same value/significance of

F=F.. The dependence of phase density on constant of motion can be

written in the form:

n= n06(F-Fo), (3.13)

where 6(x) - Dirac's delta function

6(x)=O npH x=#O; \ 6(x)dx=l.

Key: (1). with.

During this selection of the distribution function the representative

points of all particles at the four-dimensional phase space x, y, ;, y

f lie/rest on the three-dimensional surface of the hyper-ellipsoid

Let us design hyper-ellipsoid (3.14) on plane x, x. . Utilizing

equations (2.310), we obtain

GF). = . (3.15)

Analogous equation is correct for the projection of hyper-ellipsoid

on plane }y,y. According to expressions (3.12), (3.13),

M. + Am-P.
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On ellipse (3.15) lie/rest the representative points of the

particles, which move at plane XOZ; for such particles y=y=O and

A = 0. For remaining particles A2<F 0 and their representative points

fall inside ellipse (3.15). The representative points of all

particles, which move in plane YOZ, are projected/designed into the

origin of the coordinates of plane x, x since for these points

AX=0. Thus, if in the four-dimensional phase space the

representative points lie/rest on the surface of hyper-ellipsoid,

then in each two-dimensional phase space the representative points

fill the volumes, included by ellipses, type (3.15).

Page 186.

Area within ellipse (3.15), according to expressions (2.110),

(2.114), is equal to rF,. Consequently, F, - value of the given phase

volume of beam for each of the phase planes x, i and y, y. Since the

variable/alternating in the equations of motion are divided, phase

volumes must remain invariant on each plane X, P, and Y. Py.

From equation (3.14) it follows that for any particle

Out of the ellipse

(I Y 0) I (a,( Tor
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there are no particles. Particles with the maximum amplitudes in each

transverse plane reach ellipse (3.16) at the moment/torque when

x-x=0; ar 'Y ,y= 0.

Ellipse (3.16) covers beam section by plane XOY. The semi-axes of

section are equal to

r . r ) - o 1 a .( r ) ; ( 3 . 1 7 )

r, (1) - V o , ().

In this case it is assumed that functions 0 1 (r),09 (T) are selected so

that on each phase plane ellipse (3.15) would coincide with the

boundary of phase volume. Initial conditions for functions a0, a are

assigned by formulas (2.119). Are obtained the same

relationships/ratios, that also in the single-particle theory, but

the moduli/modules are fundamental of solutions ax; a. thus far they

are not determined.

Let us note that constant of motion F, determined by expression

(3.12), led to the equality of areas on planes x, 1 and y, y. The

case when two-dimensional phase volumes, are distinguished, can be

considered, after introducing the factor, different from unity, with

the afore-mentioned from the squares in sum (3.12). For

simplification in the task let us assume that the beam at the

entrance of channel possesses axial symmetry, so that its
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two-dimensional phase volumes are identical with respect to value.

The distribution of phase density (3.13) is analogous with the

microcanonical distribution of the states of the isolated/insulated

system according to energies [82]. Therefore distribution (3.13) let

us name/call microcanonical.

According to expressions (3.1), (3.13), the density of space

charge in each beam section is distributed according to the law

+0 +0
Q (x,Y, Z)=ego ~ (F - F.)d;dy.s

Page 187.

Let us replace in the dual integral the variable/alternating

integrations x, y by the new variable/alternating a, 0:

("x - Ox = a Cos 9;
GO m-oy=asinQ.

This replacement is equivalent to transition on plane ax, ag from the

Cartesian coordinates to the polar ones with the displacement of the

origin of coordinates into point a*x. *y. Fulction F(x, y, 7, , i) is

determined by expressions (.3,12), (3.11) and in the new

variable/alternating takes the form

andX hjoo+( M )2,

and the jacobian of conversion is equal to (83]
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d; d;

au #a
dy a;,

Hence

d;d= dadQ,

so that

Q(xy, T)- d'- -- Fo a da.
(Y 0(0

Let us introduce one additional replacement of variable/alternating

(==u and will designate

Then

0 (, y t ff "*oT 6 (u -- uo) du.

0

If point x, y is located out of ellipse (3.16), then u,<0 and p(x, y,

7)=0. If point x, y lies/rests within ellipse (3.16), then u,>0 we

obtain
Q(,, , r)..U "!L..

as (1) Us (T)"

Thus, in each beam section the density of space charge does not

depend on transverse coordinates. The microcanonical distribution of

phase density leads to the uniform distribution of the charge density

according to the beam section.

Let us assume I - maximum instantaneous current strength in each
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cluster of the accelerated beam.
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This value let us name/call peak beam current. Since we

disregarded/neglected the decomposition/decay of beam to the

clusters, then one should consider that we deal concerning the steady

beam, in each section of which the current retains one and the same

value/significance

I (Z, t)= 0 Q (x, y, z, t)dx dy = const,

equal to peak beam current. Then

since each beam section - this is ellipse with the uniform

distribution of charge. Taking into account expression (3.17)

Let us assume that a substantial change in the semi-axes of

section occurs at the distances, which considerably exceed the values

of semi-axes. This assumption is fulfilled well, since the transverse

sizes/dimensions of beam usually are considerably lower than the

period of focusing field. Coulomb field of particles rapidly

decreases with the distance and for each given one r the beam can be

approximated by infinite elliptical cylinder with semi-axes

r=(v), ry(T. The scalar potential of the proper field of beam satisfies

in this case the equation

PU + Pj (3.18)T+ = e )
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where

I ~ i rz t

Key: (1). with.

Let us determine the potential of the evenly charged/loaded

elliptical cylinder. The potential of field within the cylinder

corresponds to the equation

AU,=

and out of the cylinder

U=0.

Function U is continuous on the surface of cylinder together with its

first-order derivatives, and at infinity external potential behaves

as the potential of charged/loaded straight line: U.-Inr, where r -

the radius-vector of point in plane XOY. Let us switch over in plane

XOY to elliptical coordinates [84]

x-fchtcosq; yM-fshsinq. (3.19)
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The lines of the equal values of coordinates I are the ellipses

X2+ =!,xav
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where a, b - current semi-axes of the coordinate ellipse

a=fch:; b=fsht.

Value f - half of focal distance, identical for all coordinate

ellipses
= a2 - b2.

Let us select parameter f in such a way that at certain

value/significance Z=t. beam section would coincide with the

coordinate curve

r1=fch4; rv=fshL.

Hence

-- e . (3.20)

The lines of equal values n- this family of the hyperbolas
,V2 Y,
a b

where
a, =fcos n; b, =fsinmI,

moreover, the foci of coordinate hyperbolas and ellipses coincide.

The Laplacian of two-dimensional task in curvilinear coordinates

takes form [841
AU ~ ~ d A, au-)

where h,, h, - Lame's coefficients, equal to

According to equalities (3.19), in elliptical curvilinear coordinates
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the Laplacian is led to the expression
I ,a 2U + a2U

f(Cha -CoSS,) \T I-)\at,

Hence we obtain equations for the potentials of internal and applied

fields in the elliptical coordinates
M_ + _ U ! _L Qf 2 (chz t- cos2 11).

42 oq
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Particular solution of the nonhomogeneous equation
U, q) = - - Qf2 (ch 2t+cos 2I).

88,

General solution of the homogeneous equations consists of the sum of

the terms chntcos n; ch n sin nq;

sh n cos ny; sh n sin nil,

where n in view of the periodic dependence of potential on coordinate

n- integers, from the considerations of symmetry the general

solution must satisfy the conditions

U. (L)-us L-, U. M, X-)

Therefore the terms, which contain sinnI, drop out, moreover in the

sum remain only the even harmonics
Ce

U0 TO . = I (a2, ch 2m t + bv. sh Z) cos 2ma.
M-r0

Internal potential Ui(x,y) must not have gaps in the foci of

coordinate ellipses t=O; n=O, .. Hence it follows that for internal

potential bi-0. Actually/really, let us examine one of the
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derivatives of the general solution

af,- V- at + duo a
dX- at ax an Lix

From the transfer equations (3.19) we have
at sh I cos 1 d, ch tsint

dxf (ch2 t-cos2 yi) ' dx f(ch2t-cosI)"

At the points of focus derivatives A, -t go to infinity. Derivative

OUO remains final- if in foci - d -= o, which occurs when ban--.

Thus, internal potential is determined by the expression

U, (s)= - LQf'(ch 2E +cos2I)+ I av.ch2mEcos2mq.

m-O

With --.co coordinate ellipses asymptotically approach the

circles/circumferences, so that at infinity - the logarithmic

function of a radius - vector in plane XOY:
Ina+b 2rInf ----- In-
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Hence it is apparent that the external potential satisfies boundary

condition at infinity, if it consists of that damping with -O the

function and of the term, proportional . Assuming/setting

b=--a2 for the external potential, we will obtain:

U. (Z, TI) = -b - X b.e-2m cos 2myi.
M-I

Further, from the boundary conditions on the surface of the

elliptical cylinder

U, ( ) U. (4, q); ( , q) = -( , ')



DOC =82105209 PAGE

it follows

a ,. Qfl e - 2
l

;

8eo

a'=0 41) m>1.

Key: (1). with.

Internal potential in the elliptical coordinates

Ui ( , i) Q-- f-o (ch2 +cos2 -e- 24och2 cos 211) -const.

Let us return to the Cartesian coordinates. According to expressions

(3.19),

X1 Y1 f I (ch 2 '- cos 21);

x2-y'"= i (I - ch 2t cos 2q).

Substituting latter/last equalities into the expression for the

internal potential and taking into account equation (3.20), finally

we obtain
(X1Y rx .- ru

From the expression for the potential of evenly charged/loaded

elliptical cylinder (3.21) it is evident that the components of the

proper field of beam the linear functions of the

corresponding transverse coordinates. By this is justified assumption

about the linearity of equations of motion (3.7) and about the form

of first integral (3.11), (3.12). Thus, during the stationary

microcanonical distribution of phase density potential (3.21)

describes self-congruent field.
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Potential (3.21) consists of two components/terms/addends. First

term corresponds to the field of beam with the axial symmetry, this

field leads to the expansion of beam. Second term - to field with the

quadrupole symmetry. The sign of second term always coincides with

the sign of the potential of external quadrupole field, since in

focusing on x lenses r,>ry. Second component of Coulomb potential

does not shield, but amplifies external quadrupole field.
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During the conclusion/output of expression (3.21) it is assumed

that the potential of the proper field of beam is completely

determined by the charge of the accelerated particles; in other

words, we is disregarded by the compensation for space charge by the

secondary electrons, which are drawn in inside the positively

charged/loaded beam. This is justified by the fact that in the ionic

linear accelerators the slow secondary electrons are not seized into

acceleration mode. In the strong-focusing channel the electron motion

proves to be unstable, since due to the relatively small momentum .of

an electron fall in the unstable region it salted orders. In the

channel appear the forces, which provoke the departure/attendance of

electrons from potential well. Furthermore, in the proton

accelerator-injectors the time of the establishment of compensated

space charge [85] even without taking into account applied fields

usually considerably exceeds the duration of pulse beam.

The redistribution of potential in the region, occupied with the

space charge of beam, as is known, it limits the longitudinal

velocity of particles with the assigned potential on the surface of
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beam [64]. This limits a maximally possible beam current. Limitation

is determined by known law "three seconds". However, it has a

value/significance only for the beam of particles low energies. For

accelerated beams it is possible to disregard the effect of the

redistribution of potential on the longitudinal velocity of

particles. From expression (3.21) it is evident that the surface of

the beam of elliptical cross section is not equipotential. Let us

examine for simplicity the beam of round cross section r.=r=.

Then

Let on the surface of beam U-0. On the axis of bundle we have
AU

Since -eU=mv2/2, a relative change in the longitudinal velocity in

the nonrelativistic approximation/approach will comprise

Av/v=l/2-AU/U, or

V 4naom *i

Let us produce numerical estimation, after accepting I=0.5 a; A-0.02.

In this case of Av/v<0.2o/o, which is negligibly small.

Further, during the conclusion/output of expression (3.21) they

disregarded/neglected the effect of the metallic walls of channel on

the potential distribution of proper field within the bundle. If

bundle moves along the axis of continuous metal tube of round cross

section, then when r,*.r, in potential (3.21) decreases the quadrupole
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component of field and appear nonlinear terms relative to x2, y2.

Page 193.

As are shown the appropriate evaluations, the effect of metallic

walls sufficiently little, if a radius of aperture opening/aperture

somewhat exceeds the sizes/dimensions of the semi-axes of beam

section. Thus, with r1 = 7 mm, r. = 3 mm and a radius of channel 10 mm

correction to linear component of the strength of field is less than

5o/o, but nonlinear component does not exceed 2o/o. The nearer the

beam section to the circular, the less the correction. It is obvious

that the circular metal tube does not affect potential distribution

within the circular bundle whose axis coincides with the axis of

duct.

Let us return to the equations of motion (3.7). After

substituting in these equations derivatives of potential (3.21), we

will obtain

d2x elS' 2z
,R2QX@)X 2rnic' 3yfto rx.(r3 +r)=-.

US' Q1__C__ =0.
('i) 2.tmocJft3y3so ry ('x + r,) =0

The combination of the constants

(3.22)

has a dimensionality of current. For protons I,-3.14.10'a. For the
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decrease of recordings let us introduce into the equations the

parameter, which has tne dimensionality of length,

21
ra=S 2/ 23)

Then equations of motion taking into account the proper field of

bundle are reduced to the form

d
2
X +IQ(=O;

d-+L7 r. I x=)" (3.24)
dly2r' -I

dCrL Y()- &rx i, I

If beam current is negligible, then it is possible to assume 'a

and equations (3.24) are reduced to the equations of Mathieu-Hill

type with assigned periodic coefficients Q.. Q,,i.e. to the equations

of single-particle theory. For these equations by known methods can

be calculated the functions of Floquet, the completely describing

fluctuations of particles in the matched and unmatched beams. But if

Coulomb terms are not small, then equations (3.24) directly are not

solved - they contain unknown thus far functions r1 (), ruCr) Basic task

consists of the calculation envelope of particles r1,r,. Equations for

envelope taking into account Coulomb terms will be derived below.

Under the specified initial conditions for equation for the envelopes

have the periodic solutions with the period of focusing field.
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DOC = 82105210 PAGE 342

In this case equations (3.24) for the individual trajectories and

when ra-0 prove to be equations of Mathieu-Hill type, and the

functions

are the moduli/modules of the corresponding functions of Floquet.

Thus, for the matched beam it is possible to determine Floquet's

functions taking into account Coulomb pushing apart. Under the

mismatched initial conditions for enveloping equations individual

trajectories (3.24) do not have periodic coefficients and for them

not at all exists Floquet's functions. Therefore in contrast to the

single-particle theory when r* o unmatched beams it is not possible

to describe with the aid of Floquet functions and for them it is

necessary each time to search for new solutions. Subsequently we will

obtain the estimations, which make it possible to establish/install,

in what cases it is possible to assume/set r. = 0.

S 3.3. Envelope of particles. Frequency of incoherent.

Equations for the envelopes can be comprised analogously with

equations (2.69). Let us substitute in the equations of motion (3.24)

complex solutions (3.8). Taking into account relationships/ratios

(3.9) and (3.17), we obtain
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d2
pr F'_ 2ij =0:

2r (3.26)
__jT2 -- Q, (T) T , :-y=0

- '= 0.

Initial conditions for the envelopes are determined by expressions

(2.121).

Envelope of particles in the strong-focusing channel satisfy

system of two nonlinear second order equations with the periodic

coefficients, moreover variable/alternating in the equations are not

divided. Equations (3.26) do not have the tabulated solutions and

must be solved numerically under the assigned initial conditions. In

the general case of solving the system of equations (3.26) they prove

to be noncyc.i.c that it corresponds to the envelopes of unmatched

beams. Periodic solutions for the envelopes, that correspond to

matched beam, determine from periodicity condition (with the period

of functions Q.QQ). Usually by known methods calculate the

moduli/modules of Floquet's functions when r.= O. and then of the

special computational program they find periodic solutions for r,,ry.

gradually increasing parameter r. to the given value. For the

numerical integration of equation (3.26) it is convenient to convert,

after passing directly to the moduli/modules of the

standardized/normalized complex solutions by formulas (3.17).
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Then in the equations remains, besides assigned functions Q, Q,. one

arbitrary parameter

d2 Y 2rO

ax2 ~ ~ a -ro f y.o

The periodic solutions of equations (3.27) Q, T), Q,(T)- the

moduli/modules of Floquet functions of equations (3.24), that

correspond to the specific value/significance of parameter 2r. F,. The

definitions, given above for the instantaneous and medium frequencies

of transverse vibrations (2.101), (2.104), can be now generalized to

the case of matched beams with the large space charge. Phase change

of Floquet's function in the matched beam is as before determined by

formula (2.105)

U £

To the numerical solution in the computers of equations (3.26)

or (3.27) one should resort when previously it cannot be assumed that

the hardnesses of quadrupole lenses are sufficiently small. But if

when r = 0 phase change of transverse vibrations in the period of

focusing field is small, then equations for the envelopes can be

solved in the smooth approximation/approach. Let when r.,- 0 I&-u.. Let

us assume p.<<2r. We will search for solutions for the envelopes in
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the form

r. (T) = R. (T) I !-qx (T)I1;
r~(r~R~()II q~(rj. 3.29)r, (T) =- Ry (T) II - (T)I1.

Functions q1 (T), qy(T) let us determine by equation (2.224) and

conditions (2.226), (2.227). As was shown in S 2.7, from the

condition u.<<2f follows qx (< I. q, < I. Values R. R,- the

average/mean values of envelopes in each period of focusing field.

Since qx, q are small,
I I

R3 (I - 3q,).

11R x q X R , 1r Iry R R R R )z  (Rx ,

After substituting solutions (3.29) in equations (3.26), we will be

restricted to linear approximation/approach on q.. q,. Averaging

equations for the period of focusing field and taking into account

equality (2.229), we obtain
___ r* -0:

(3.30)
My 2r%, 0.d,2 + ,Ru- oR-Y , - RU
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Regarding, functions q., q, from the beam current and on its phase

volume do not depend. Thus, in the smooth approximation/approach the

dependence of envelopes on the current and the phase volume is

completely determined by slow components R,. R,. Equations (3.30)
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contain only constant coefficients, which in principle facilitates

the calculations envelope of particles.

Let us examine first the focusing of matched beams in the smooth

approximation/approach. Equations (3.30) have particular solution
R,=const; R,=const. In this case d2-- =-- =0, so that two coordinates

of the state of equilibrium R, Ry are determined by the algebraic

equations

,R + AM:
(3.31)

F 
2, 

0
R ',R R, + Ri,=o .

Since equations (3.31) are symmetrical relative to the

adjustment/exchange of indices, must exist solution R,?R=RRc. System

of equations (3.31) is reduced to one biquadratic equation

whence

/,2.+ Vr/. +4WJ1Re/V 2+ (3.32)

Envelope of particles, which correspond to this solution, are

periodical with the period Ar-i

r (r) = R e +I q (T); (3.29a)

The mean radius of matched beam Re depends on the full current of

beam, proportional, according to expression (3.23), parameter r., and
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from the value of the projection of the phase volume of beam on each

of the phase planes, proportional F.. From expression (3.32) it

follows that with

r. < 2p , (3.33)

the mean radius of beam on current does not depend

where RgC- the mean radius of matched beam with the negligible

intensity.
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In other limiting case

> 2pGFo

the mean radius equals

and does not depend on the phase volume of

beam. With satisfaction of condition (3.33) it is possible to use the

equations, which do not consider Coulomb interaction of particles. As

the criterion of space-charge effect on the transverse size/dimension

of matched beam is convenient value

r, (.3,41

which let us name/call the Coulomb parameter of beam. Case (3.33) is

reduced then to condition h<<l, and second limiting case - to

condition h>>l. Expression for the mean radius of matched beam (3.32)
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can be simplified

Rc=R | I-- I -h. (1.Jh)

Thus, in the smooth approximation/approach the expansion of beam in

the focusing channel is determined by the only parameter, which

represents the dimensionless combination of the basic parameters of

beam and channel. The Coulomb parameter of beam can be represented,

according to expressions (2.106), (2.113), (3.23), in the form

h (33 ,

Here I. - characteristic for each type of the accelerated particles

strength of current (3.22); 0,- the medium frequency of transverse

vibrations in the absence of space charge; I - complete peak beam

current; V,- the value of the projection of four-dimensional phase

volume on one of phase planes (2.2). The ratio of the full current of

beam in the peak to two-dimensional transverse phase volume V, let us

name/call the phase current density of beam. The Coulomb parameter of

beam is proportional to phase current density.

From an increase in the energy of particles the Coulomb

parameter falls. Therefore the space charge of beam most of all

affects particle focusing in the initial part of the accelerator.

In the smooth approximation/approach to calculate the frequency

of single particles in the matched beam is simple. The modulus/module

of Floquet's function is determined by expressions (3.25), (3.29a),
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(3.35):

e ()= - -1 l-h= i'..r
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Substituting Floquet's modulus/module into equality (2.101), we have

where we- the instantaneous value/significance of the frequency of

transverse vibrations in the absence of space charge. It is averaged

frequency on the period of the focusing field

V- I----h). (3.39)

With an increase in the phase current density the frequency of

transverse vibrations decreases. Consequently, smooth

approximation/approach is improved for the beams with the large

intensity. If particle motion in the absence of space charge is

stable, then Icos t0 < I and s. is real. Then frequency u remains real

at any values of Coulomb parameter. Thus, beam does not lose lateral

stability with as the conveniently high currents. However, with the

time of ripening of phase current density increase dimensions of beam

in the assigned focusing fields; therefore to realize lateral

stability with h-iw in the principle is possible only with the

infinite aperture.

For evaluating the limits of the applicability of the smooth
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approximation/approach of equation (3.27) they integrated numerically

with the aid of electronic computer M-20. For each set of the
2 *parameters U,, j- were determined the periodic solutions with the

period of the focusing field: Ux=Q.(r);aG=Q,(r). Then they calculated the

medium frequency of transverse vibrations according to formula

(3.28). Fig. 3.2 gives the dependence of the relation of medium

frequencies a/m. on value 1 - cos a, for the symmetrical periods of

the type FODO with a relative length of lenses of d=D/S, equal to

d=1/20 and d=1/2.
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Fig. 3.2.
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Graphs/curves are givri for two values of the Coulomb parameter of

beam. On the vertical axis the right scale pertains to h=12. left -

to h-2. In the nasty approximation/approach the ratio m/m, is

uniquely determined by the given value of the Coulomb parameter and

on cos m. does not depend. From the graphs/curves given in Fig. 3.2

it is evident that the medium frequency is calculated in the smooth

approximation/approach with the high accuracy. A relative error in

the calculation a with cos a,-0.2 does not exceed 5o/o.

Fig. 3.3 and 3.4 give the maximum Qx(01 and minimum Qg(0) values
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of Floquet's modulus/module in the channel FODO with d=1/2.

Graphs/curves are constructed for three values of the Coulomb

parameter h, equal to 0; 1/2; 2. Dotted line showed the outer limits

of modulus/module, calculated in the smooth approximation/approach

according to formula (3.37). Function q7 (T)=-q,(T) corresponding to

this case is given in Fig. 2.20.
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Prom the graphs/curves it follows that smooth approximation/approach

gives the error in the determination of the matched values of

envelopes, which does not exceed by lOo/o to value/significance of

cos A,-0.3. This value/significance corresponds to the

approximately/exemplarily five periods of focusing field for one

period of transverse vibrations (in the absence of noticeable space

charge). With an increase of the Coulomb parameter relative error in
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the determination of the values of Floquet's modulus/module falls.

The graphs/curves, analogous to those constructed in Fig. 3.3 and

3.4, occur also for the channel with short lenses (d=1/20). With cos

u.,0.3 an error in the smooth approximation/approach is virtually

identical for the channels to the long and zhort lenses. At smaller

values of cos g. the error in the channel with the short lenses

increases more rapidly than in the channel with the long lenses.

If at the entrance of channel Floquet's modulus/module does not

have an extremum, then the definition of the matched initial

conditions requires the calculations of both moduli/modules and

derivatives. Fig. 3.5 and 3.6 give the results of the numerical

calculations by the envelope of matched beam with the asymmetric

period of the type FOD with two clearances of relative length 0.1 and

0.25 and with two lenses with a length of d=0.325each (model of the

period of focusing field in the linear accelerator of protons 1-2).
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Fig. 3.5 Fig. 3.6.
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Along the axis of abscissas are deposited/postponed the values of the

Coulomb parameter on the logarithmic scale. Calculations are carried

out to the high values of the Coulomb parameter and in Fig. 3.5 and

3.6 are given f or one value/significance of medium frequency cos

M,-0.415. Dotted line corresponds to the values, calculated in smooth

approximation/approach (3.37), moreover in this case

6-;



DOC = 82105210 PAGE 21 3tY'

The approximate curves follow precise ones in entire range of change

of the Coulomb parameter. The error in the determination of Floquet's

modulus/module does not exceed lOo/o, while the error in the

determination of derivatives of modulus/module composes 20o/o at the

low values of h and decreases with an increase in the Coulomb

parameter. Taking into account that the experimental determination of

the absolute value of the phase volume of beam hardly can be produced

on the real beam with the higher accuracy, the errors of the

approximate computations should be considered completely

satisfactory.

Thus, for calculating the matched initial conditions they must

be assigned: to function Q.(T), Qv(,) of the chosen channel: the

two-dimensional phase volume of beam V.: the full current of beam in

peak I. According to these data it is possible to find reduced volume

(2.111) and characteristic Coulomb length (3.23) on the entrance of

channel, which makes it possible to write equations for the envelopes

(3.26). With the aid of electronic computer is determined the only

periodic solution of these equations with the period Ar-1. If

solutions are found, then this determines the parameters of matched

beam at the entrance of channel r.(O), r,(O), -(), (0) Instead of two

latter/last derivatives it is possible to determine the
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inclinations/slopes of envelope in the radians
dr, I 1 r, dry I dry

dz S d-v ' Y S T "

As it was shown above, in many practical cases it is possible to be

restricted to the smooth approximation/approach, which makes it

possible not to resort to the numerical solution of equations (3.26)

or (3.27). In the smooth approximation/approach the initial

parameters of matched beam take the form

(0 L0 (0) 1Jh +V- h2.

~j~zO- Vt 0 dq_ (0)V - -- ~.r~a(O)= /7 -dq ) =|lh 2 ;

Functions q. (Tj, q (,r), determined by equation (2.224) and conditions

(2.226), (2.227), make it possible to find the medium frequency of

transverse vibrations g, (2.229) and the Coulomb parameter of beam on

the entrance of channel (3.34).
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In the nasty approximation/approach the relation of the semi-axes of

the matched section and the relation of the inclinations/slopes of

envelopes are determined only by the parameters of the focusing

channel and do not depend on phase volume and beam current. However,

the absolute values of semi-axes and inclinations/slopes depend

substantially on the phase volume of beam and phase current density.
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With a change in these parameters it is necessary to again select

matching conditions.

Let us examine as an example the entrance of the linear

accelerator of protons 1-100 (see S 2.9). Since the period of

focusing field is symmetrical and begins from the middle of lens,

matched beam must have at the entrance of accelerator a crossover. If

phase current density is negligible, then h=0 and at the entrance we

have

We will use the fact that Floquet's modulus/module reaches at the

entrance of the channel of outer limit (L=O) and it is converted

formula for r;.r. According to expressions (2.156), (2.234),

v; l qx)t

Hence

Relationships/ratios (3.40) are valid in the general case, since when

e =o the relation of the semi-axes of the ellipse, which limits the

phase volume of matched beam, is equal to v. V,. u.Icm-mrad. In the

case of S-2pX in question and in accordance with formula (2.113)

F,-0.04 cms. The instantaneous values of frequencies calculate from

the matrix/die period and with cos #,-0.6 they are equal to
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v.p = 0,35;v. = 1.9. Hence 4 0,35 cm; 4 = 0.15 cm. Let us assume now that

the peak beam current is led to 400 mA with phase volume V,-0,2cm x

mrad. Then we have F.=0.08 cm2 and h=0.68; this gives r, 0,66 cm,

r =0.28 cm. The relation of the semi-axes of section is retained.

If phase current density is negligible, then the mean radius of

unmatched beam, as it was shown in Chapter 2, it oscillates with the

doubled medium frequency of transverse vibrations of single

particles. From the frequency of local maximums it is possible to

judge the medium frequency of transverse vibrations of particles in

the beam. The maximum sizes of unmatched beam are determined by its

principal maximums and they always exceed the maximum size of matched

beam with the same phase volume.

At the essential phase current density the picture of the

behavior of the envelope of unmatched beam considerably becomes

complicated. The repetition frequency of principal maximums

increases, but the value of principal maximums which was kept

approximately constant with h-0 (see Fig. 2.14), begins to oscillate

with the relatively low frequency, much less than Q:.
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The integral relationship/ratio between the medium frequency of the
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oscillations of particles Q, and the repetition frequency of the

principal maximums of envelope is disrupted, so that from the

frequency of local maximums it cannot be more judged the medium

frequency of the fluctuations of particles within the beam. As in the

case of h=0, with hp0 the maximum size of unmatched beam in a rather

long channel always exceeds the size/dimension of matched beam. With

the decrease of phase current density the frequency of principal

maximums is decreased and within the limit it vanishes. The envelope

of unmatched beam with the high phase current density is

schematically depicted in Fig. 3.7. With the virtually attainable at

present values of phase current density the oscillations of principal

maximums can be revealed only in the very long channels. Thus, with

h=l (which is close to the Coulomb parameter of the beam which can be

achieved/reached in the contemporary proton accelerators) the period

of oscillations of principal maximums is approximately 300 periods of

focusing field. In the linear accelerators the Coulomb parameter

decreases with an increase in the energy of particles, so that also

this period gradually grows/rises. Thus, if are assigned initial

conditions, then the maximum size of unmatched beam in the channel

virtually completely is determined by the first principal maximum.

ILI
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Fig. 3.7. Key: (1). Repetition frequency of focusing field. (2).

Frequency of oscillations of principal maximums. (3). Repetition

frequency of principal maximums.

S 3.4. Focusing of matched beams during different stationary

distributions of phase density.

All given relationships/ratios, which are determining the effect

of Coulomb pushing apart on transverse vibrations of particles, are

obtained on the assumption that occurs the stationary microcanonical

distribution of phase density in four-dimensional phase space (3.13).

In this case each beam section in the strong-focusing channel is

limited by ellipse with uniform density distribution of space charge

according to the section and equations of motion prove to be linear

with the divided variable/alternating.
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During the microcanonical distribution the representative points of

particles lie/rest only on the surface of four-dimensional

hyper-ellipsoid; the four-dimensional phase volume of such a beam is

equal to zero. Real beams possess different from zero

four-dimensional phase volumes. In connection with this it is

important to explain, as are changed the obtained

relationships/ratios, if we switch over to other stationary

distributions of phase density.

In S 3.3 it is shown that smooth approximation/approach gives

completely satisfactory accuracy in the entire virtually interesting

part of the first stability region. On the other hand, smooth

approximation/approach makes it possible to pass from the equations

of motion whose coefficients clearly depend on time, to the

autonomous equations, i.e., to the equations with the constant

coefficients. If we average equations of motion (3.7) along the

period of focusing field, then Hamiltonian corresponding to these

averaged equations proves to be in the matched beams constant of

motion. Then it is possible to determine the self-consistent

solutions for the averaged motion, on the basis of the fact that the

function of the distribution of phase density depends on constants of

motion of the averaged equations. Essential is the fact that the

actual trajectories of particles are connected with the solutions of

the averaqed equations through the periodic coefficients whose value
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depends not on space charge, nor on the distribution of phase

density, but it depends only on focusing fields themselves. Therefore

constant of motion of averaged equations remains in the

approximation/approach accepted and the integral of the initial

unaveraged equations. In the smooth approximation/approach it is

possible to present task to the end/lead and during some other

stationary distributions, different from the microcanonical.

Subsequently let us examine the following distributions.

1. Distribution, analogous to distribution of Fermi for

degenerate electron gas [82]:

n =n=cort V H<H,; (3.41)
n = 0 np H>Ho.

Key: (1). with.

Distribution of this type we utilize also in Chapter 4 in the

examination of the longitudinal vibrations of particles.

2. Distribution, analogous to canonical [82]:

SH-

none (3.42)

and leading to Maxwellian particle distribution according to thermal

velocities.

-I
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In the preceding/previous paragraph smooth

approximation/approach was used for the averaging of equations (3.26)

whose form already corresponded to the concrete/specific/actual

function of particle distribution in the self-congruent field.
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We now utilize smooth approximation/approach directly for the

averaging of general/common/total equations of motion (3.7), making

thus far no assumptions about the form of the function of

distribution. Transition to the autonomous equations can be completed

only for the matched beams, since with the unmatched beams in the

Coulomb terms of equation remains explicit dependence on the time.

Thus, let us assume that the medium frequency of transverse

vibrations of particles is much lower than repetition frequency of

the focusing structure. Let us decompose derivatives of potential,

entering equations (3.7), the power series for the low values of the

rapid components of trajectory we will be restricted to linear terms.

According to expression (2.222),

X () =X () + () X (); (3.43)

o (T) rY (r) v (e ) Y (T).

For derivative -- we have
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(X. - T) =- (X, Y, a, (X, Y, T) qX

d2U-Y -y X Y, T) quY--... (3.44)

Analogous resolution we will obtain also for derivative - . Let us

substitute sums (3.43), (3.44) in equations (3.7) it is averaged

equation for the period of focusing field. Taking into account

equality (2.229) in exchange for equation (2.228) we will obtain

•q(r)- M-X Y. T)dT X

0

eS2  OL+602y Y qy(T (X. Y, T)I
0

eS- U-+ K "- IU (X. -', . d- =o0.

We utilize for a comparative evaluation of members of the formulas,

obtained under the assumption about the microcanonical distribution.

Coulomb potential satisfies equation (3.18), whence

d2IJ oU /I.

In the smooth approximation/approach, according to expression (3.29),

for the matched beam we have

p--. - - (-q-q- ).
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Since in smooth approximation/approach the beam is close to the
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axisymmetric, (I,- I

Hence

where - the characteristic Coulomb length, determined by formula

(3.23). But in accordance with relationships/ratios (2.233), (3.32)
ra -

Thus, terms, which contain under the integral sign second derivatives

that of potential, it is possible to disregard. The averaged

potential U in the matched beam does not depend on the time

U(XL. Y, = (X. I. T)dT.

As a result after averaging we have the following autonomous system

of equations of the motion

g,, -j-X . l} (X , Y) = 0;
(3.45)

JAsY . S' *- (X. Y)=0.d~t-r2 0o , SOP20, dY

Potential U(X, Y, r), undertaken at point X, Y, is determined by

the equation of Poisson (3.18)
(X, ~ M , )'oU {(X, Y, . (3.18a)Y, --? (X ,  y, ) - ,-

After averaging equation (3.18a) for the period of focusing field we

will obtain

+- -- Q(X, Y). (3.46)- Yj' + Y E- -
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3 ,13

where

(X, Y)= \ Q(X, Y. T)dT.
0

Finally, averaging on the period of focusing field expression (3.1),

we have

Q(X, Y)=e -n(X, Y, X , Y d (3.47)
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Subsequently let us examine the autonomous dynamic system motion

by which is described by equations (3.45). X, Y - generalized

coordinates of this system. Let us name/call the dynamic system of

that averaged indicated, and the corresponding to it model of bundle

- by averaged beam. Of the sense of expression (3.47) n (X, Y, X, Y)

- the distribution function in the phase space of the averaged beam.

Thus, value n must depend only on the first integrals of equations

(3.45). After solving together equations (3.45)-(3.47) when n -

function of constants of motion, we will obtain the self-consistent

solutions for the averaged beam. These solutions correspond to the

self-consistent particle trajectories averaged on the period of

focusing field in the real beam. If they are known to particle

trajectory in the averaged beam X(r), Y(r), then the particle

trajectories of the real beam are determined directly according to

formulas (3.43).
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Equations (3.45) have an integral of the type of the integral of

the energy:
H (.X, Y, 1' Y) (' 2-- s) + L2o(X2+ y2) + -es, 0(y, I').

I eS2

(3.48)

If we substitute into expression (3.48) of equality (3.43), then we

will obtain approximation for constant of motion of particles in the

real beam

(x. y, X- 1XX+ "+
x, y, +q)

The obtained function H(x, y, x, y, r) is not the Hamiltonian of

reference system.

The potential averaged on the period of focusing field of the

proper field of beam has axial symmetry. Let us switch over to the

cylindrical coordinates

X-RcosV; Y=RsinF.

Then
0 (X, Y)---U (R); -e(X,Y) (.

Let us introduce designation for the complete transverse particle

momentum
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Constant of motion (3.48) and the equation of field (3.46) can be

rewritten in the form

H RP)(R): (3.49a)

7 .- 7- -- o(Rya
dRk R dp e (R). (3.496)

The potential of proper field within the beam satisfies the boundary

conditions

(0) = 0; (0) = 0. (3.50)

The functions of distribution (3.13), (3.41), (3.42) let us relate to

the phase density of the averaged beam.

Let us examine, first of all, the microcanonical distribution

n(R, P) = "n6 (H -H).

In this case

(R) = 2:zeno * (H - H) P dP.
0

But, according to expression (3.49a), with R=const we have PdP-dH,

whence

(R)= 2en, 6 (H- H.) dH= 2,en0 .
0
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The averaged density of space charge evenly distributed over the

section of the averaged beam. Current in the beam

I= , Q(x. y, r)dx dt

on r does not depend. After averaging on the period of focusing field

we have
RC

I=2wv \ Q(R)RdR. (3.51)
a

Hence

Q(R) / R = const.

Substituting latter/last expression in equation (3.49b) and taking

into account boundary conditions (3.50), we obtain the following

solution for the averaged potential within the beam

U ( R ) = 4 .t v -k -,

Page 210.

The equations of motion of particles in averaged beam (3.45) in this

case prove to be linear and taking into account designation (3.23)

are reduced to the form

C

C - 0."A "1"k.,-,--" -cR2, =O
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The averaged solution in plane XOZ exists

X (T) = R, cos (wLr +e),
dX~
&'(r) = - R sin (uT + t),

where

=i -- 2= -14 (3.52)R;

Integral curves on planes X, X and Y, Y are ellipses. The boundaries

of the averaged beam they reach particle with a maximum amplitude of

averaged oscillations of R,=Rv=R. To these particles corresponds on

the phase plane the XX trajectory

X2
-+  = R(3.53)

covering the representative points of all particles. The product of

the semi-axes of ellipse (3.53) is equal to FO=pR'. The reduced

volume of real beam in the general case is determined by the

expression

Fe- TOWS.

Substituting in this expression of equality (2.235), (3.29), we

obtain, that in the smooth approximation/approach F.=F,. Further,

since -0, that of equality (3.52) we have

R 2 _ F
2

!

Ho-a

Hence a radius of the averaged beam is equal to



DOC = 82105210 PAGE 3r 39

where

it is the Coulomb parameter of beam.

Page 211.

Solution for a radius of the averaged beam coincides with solution

(3.35) for the mean radius of matched beam, obtained above as a

result of the averaging of strict self-consistent solutions in the

real beam with uniform density distribution of space charge according

to the section. Therefore all conclusions, which relate to the

matched beams with smooth envelope, are applicable.

Let now the phase density of the averaged beam be distributed

according to the degenerate law: n-n. with HH. and n-0 with H>H.. In

accordance with integral expression (3.47)

Puamc (11)

(R) = 2ien, PdP

or

Q (R) = i p Pse ra (R)Iai

Since for any assigned R transverse impulse reaches maximum
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value/significance with H-H., then from expression (3.49a) we have

Pla..c = 2HO - 2R S - L(- L (R).

The density of space charge is distributed in the beam section

according to the law
2e5 UR)j . (3.54)-(R) = neno  2 2H, - I2R2 - (R---3.54)

Let us substitute expression (3.54) in the equation of averaged

potential (3.49b). For the decrease of the subsequent recordings let

us introduce the designation
R' = e, 2s.fS (3.55)

Then equation (3.49b) is reduced to the form
d'LI I dU 1 60

2S2RH' R, + R dR WtU = 7 2R2 - -- /

Let us switch over to the dimensionless radius

RS= (3.56)

In this case
Z'- -r _L C . tO/ - Ho,. ",

s ds eSt

The solution of homogeneous equation, final in zero, is the modified

Bessel function of zero-order I.(s) [86].

Page 212.

The particular solution of nonhomogeneous equation takes the form
7-O (- 2pR - ± _ .;s') .

Taking into account boundary conditions (3.50) we will obtain the

following solution for the potential
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)( I2 Ho) 2 1iS]. (3.57)

From formulas (3.54), (3.57) follows the expression for density

distribution of charge according to a radius of the averaged beam
(s) 2=R, ] s) . (3.58)

The density of space charge becomes zero on the boundary of averaged

beam R=R,:Q(k)=O, where k=-Le- Thus, for parameter k, which is
RO "

determining a radius of averaged beam Re, we have

to (k) I H (3.59)

and expression (3.58) is reduced to the form

-(s) - 2s.L: A [1 - (S) (
I, (k) J(.5a

Further, according to expression (3.51), beam current is equal to

I 2xvR' . Q(s) sds.
0

Hence
I R , 3l r 2I, (k) (3.60)

We will use expression (3.23) for characteristic Coulomb length:

S 1,(k) , (3.61)0o e

Is found one equation (3.61) for definition of two unknown values Re,

k from the assigned parameters of beam and channel r.. s,. The second

equation must be the expression, which connects values k and R, with

the transverse phase volume of beam. Let us note that the entering
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distribution (3.41) value n. was replaced with the dimensionless

parameter k, to operate with which more conveniently.
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For the case of singular distribution we will obtain the

equations of motion of particles in the averaged beam.

Differentiating function (3.57), we have

ax eTS2  s (k) 03.62)

Let us substitute these expressions in equations (3.45):
d2X + 1 X 0, .

iiii- 0 s/ (k)(3.63)
d Zy 2 .2 1 t is L y

The equations of transverse vibrations of particles in the intense

beam with singular distribution of phase density prove to be

nonlinear, since according to expression (3.56),
s =-k }X2-+ y2.

Above is obtained the expression for the potential of

self-congruent field during stationary singular distribution (3.57).

First integral (3.49a) it is possible to now write in the more

specific form. Substituting potential (3.57) into constant of motion

(3.49a) and utilizing equality (3.59), we obtain

(s, P) -LT P2 + H. -()
/2I)-
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Since for all particles of beam H<H., then
P .< 2H. I ) ,- " I .1o Jz)-

Since P2>O, then the particles, which reach the periphery of beam,

corresponds constant of motion H=Ho. Transverse particle momentum,

which reach the periphery of beam, is connected with the current

radial displacement by the relationship/ratio

P12=2 I - ~1 ]()-IPLH 1 0lot)-I I"

To the periphery of beam s=k and the complete transverse impulse

becomes zero. Constant of motion for the particles, which reach the

periphery of beam, takes the form
IHo - _ o _

2 I,(k)- /(s) I- --t (k).

Let us replace H. with its expression of equality (3.59)

T P -
+ 2R R ! -0 ($' 2p R

YCk k2
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Thus, the representative points of peripheral particles lie in the

four-dimensional phase space X, Y, X, Y on the locked hypersurface

k2 1 1,- - '4F~2  X + ')- 1 ! \ X+=k 1. (3. 64)'
0~ C

This hypersurface encompasses the representative points of all

particles in the four-dimensional phase space of the averaged beam

and is, therefore, the boundary of the phase volume, occupied with

beam. If during the microcanonical distribution the representative

points are arranged/located only on the hypersurface, then in the

case of singular distribution the representative points fill the

limited four-dimensional volume. The projection of four-dimensional

phase volume on plane X, X is determined with the aid of equations

(2.310) and takes the form
== XS +7-1 16\k--j X l

(3.65).

Projection coincides with the section of four-dimensional volume

(3.64) by plane Y-0; Y=0. The curve, described by equation (3.65), is

given in Fig. 3.J. The semi-axes of this figure, according to

expression (3.65), are respectively equal to
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Xaitc = Re;

Taking into account equality (3.59) we will obtain XdaM -41.

The reduced volume of the real beam F, regarding exists divided
dx

into r the projected area of phase volume on plane x, d-

Specifically, during this determination reduced volume is connected

with the value of two-dimensional phase volume with

relationship/ratio (2.113). In the smooth approximation/approach WF.

it coincides with the projected area of the phase volume of the

averaged beam on plane X, dX/dr

Re

4 k dX.

The curve, described by equation (3.65), is not ellipse.
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., h-2

Fig. 3.8.

Page 215.

Therefore reduced volume is not equal to the product of the semi-axes

of projection and, according to equation (3.65), it comprises

F, -!!2 Re- ~k) (3.G

Equality (3.66) - this is second missing equation for determining the

values Rc, k. Let us introduce for the decrease of recording the

following function from k:

(%) -V !,(k)-T(4) d'.
I0

A radius of the averaged beam can be now written in the form

Re L W •(.7

Let us substitute expression (3.67) in equation (3.61). This it gives

"i/o (k) --/, i)1(k) = 2h, (3.68)
*A (k) V ;J(_k()
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where h - introduced above Coulomb parameter of beam (3.34),

proportional to phase current density. Thus, in terms of the given

value of the Coulomb parameter it is possible to determine the

auxiliary parameter k, with the aid of which is determined a radius

of the averaged matched beam. Formulas (3.67), (3.68) together give

the dependence of a radius of the averaged beam on the Coulomb

parameter, analogous to simpler dependence (3.35), obtained for the

microcanonical distribution.

The modified Bessel functions of zero and first order near k=O

take the form

1, WS + 4 -(i

I,() k + k
3

2)'

Hence with k<<l it follows
5-.R(k)=I+ 5 2+

R W(oI+--k....,

h--k+..

16

Page 216.

Thus, value

Rol - (3.69)



DOC = 82105211 PAGE £0

is a radius of the averaged matched beam at the negligible phase

current density. Formula (3.69) coincides in by expression (2.237).

At the low values of phase current density the equation of curve

(3.65), which limits the transverse volume of beam to plane X, X, is

reduced to the form

_ '<2 X42 tl 4h) -4 -+h I = -3h.
N~R- -

With h- curve (3.65) degenerates into the ellipse.

Since equations of motion (3.63) are nonlinear, then the

frequency of transverse vibrations during singular distribution

depends on amplitude. For paraxial particles s<<l and from equations

(3.63) we obtain

d, +1 0 )X =0.

The frequency of small transverse vibrations with ht0 is equal to
JA (3.70)

The frequency of transverse vibrations of particles, which reach beam

boundaries, is determined directly from the equation of phase

trajectory (3.65):

_ _ 1 v o(k) _ _( __--/° 
( )  (3.71)

A h o vu -(k) cren

At the low values of the phase current density of expression
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(3.67), (3.70), (3.71) they take the form

Rc=lR'\ l +" h-.... ) ;

L= p (l-2-..)

paraxial particles complete oscillations with the frequency of of

lower than the particles, which reach beam boundaries.

From formula (3.68) it follows that parameter k monotonically

increases with increase in h. In accordance with increase of h

increases a radius of beam in the assigned focusing field. However,

at any value/significance of h (in other words, at any

value/significance of phase current density) a radius of beam retains

finite value and, therefore, beam does not lose stability, if only

the aperture of channel is sufficiently great.

Page 217.

If k>>l, then function I,(kt) remains small in comparison with

value I.(k) in the range 0,>l up to the values , very close to

unity. Integrand in the formula, which is determining function l(k),

with increase of k graphically approaches a rectangle with the

basis/base, equal to unity. Therefore function %(k)at infinity

behaves as
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Function I,(k) with the increase of argument asimptotically tends for

1,(k). Hence with k>>l

R, Rc 3.72)

Distribution according to a radius of the averaged density of

three-dimensional/space charge in the case of singular distribution

is described by formula (3.58a). Combining expressions (3.58a),

(3.60), it is possible to represent the dependence of the charge

density on a radius in the form

F ( 6' RN1

Re - 0 klo(k) Io3.73J

Here I"

Qo C

is density of charge average over the section.

The canonical distribution of phase density (3.42) leads to

following density distribution of space charge according to the

section of averaged beam (3.47):

l -- (R P)

e (R)-2neo e P dP.
0

Let us substitute into this formula the general/common/total

expression for constant of motion (3.49a):

J
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Q (R) - I2eno8 exp eS U . (3.74)

Taking into account expression (3.74) the equation of averaged

potential (3.49b) takes the form

I d - 2teno e 
RdR dRv, t

Let us introduce instead of the averaged potential U(R) the new

function V(R)=Voexp- (iR2- eS2 (
(l :, Ys LU (3.7'5)

Page 218.

According to expression (3.75),

e ---- --V ---- +'AR •(3.76)

If we utilize the dimensionless independent variable

s = ).o_ R,
186

then we will obtain the following equation for function V(s):

I d .. V. 2.ueS2
±4QV ds)+2. -no vV (s).

Let us select now constant V, as follows

Ve - O 20,Y, . (3.77)

Then equation for function V(s) is reduced to the form
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I d ( L .'dV V(s)-2. (3.78)

Initial conditions for function V(s) can be determined from

expressions (3.75), (3.76) according to conditions (3.50),

superimposed to the averaged potential

(0)=V0: -- (0) = 0 (3.79)

Density distribution of charge along a radius of the averaged

beam is determined by equalities (3.74), (3.75)
^V (S)

Q (s) = 2nnoO V . (3.80)

The full current of beam (3.51) is equal to

SI== 4.tlenO2 V(s)sdi. (3.81)Po Vo

Substituting in equality (3.81) for V. its expression (3.77) and

utilizing designations for characteristic Coulomb length (3.23), we

obtain

o V (s) s ds -(3.82)

0

During the canonical distribution of phase density the

representative points are propagated over entire four-dimensional

phase space. Therefore beam, generally speaking, does not have

terminal radius.
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However, phase density rapidly drops during the removal/distance from

the origin of coordinates, so that basic part of the beam current is

concentrated in the region near the axis. Let us accept as a radius

of averaged beam R, a radius of the section, which covers n 100o/o

of total beam current:

~ V4

\ V(s)sds=T V(s)sds. (3.83)
U

R:- radius of the averaged beam (in the sense indicated above) at

the negligible phase current density. Then the reduced volume of beam

F. it is expedient to define as the value, entering

relationship/ratio (2.237):

o = (3.84)

Actually/really, in this case

nFo= tpo(RC8)2

the area, occupied on plane by those X, k particles which give the

contribution to the useful part of the full current of beam IO0l%,

_n 'V- Fc0ScT0

the two-dimensional phase volume of this part of the beam.

Introducing into equality (3.84) the dimensionless radius
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so- " R° ,

we obtain tAF0e= s .F (3.85)

Relationship/ratio (3.82) takes the form

V(s)sds= s

But combination the sublimity

21ioF0

coincides with introduced at the analysis of other distributions

Coulomb parameter of beam in the given focusing fields. Thus,

SV (s) sds=2s/. (3.861
0

Equality (3.86) is convenient to those that express the integral of

the unknown function V(s) through the universal dimensionless

parameter h.

Page 220.

Different distributions it is expedient to compare between themselves

at one and the same value/significance h, which does not depend on

the type of distribution and which connects beam current, the phase

volume of beam and lens power.
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Value s. it is easy to determine. In the absence of space charge

ff(s)=0. In this case, as it follows from equality (3.75),

V(s)=V oe- 2

After substituting this function into expression (3.83), we will

obtain 90
e- 2  esds. 

Hence
= -- n~l- )'.(3.87)

Let us note that the value of integral (3.86) of selection s. does

not depend, since function by V(s) its initial conditions (3.79) is

determined unambiguously. However, arbitrary remains the selection of

the limited value/significance of the phase volume of beam and,

therefore, of Coulomb parameter of beam at the assigned parameters of

beam and channel 'r., o. If we define the two-dimensional projection of

the phase volume of beam as region, where fall 90o/o of all

particles, then tl=Q.9 and s.-2.146. To virtually more conveniently

conduct calculations, after assuming s,-2; in this case in accordance

with expression (3.87), n= 0,865.The numerical calculations whose

results are given below, are given for case of s,-2. Thus, as a

radius of the averaged matched beam was accepted a radius of the

section, which covers 86.5o/o of the full current of beam.
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Since value V, is actually unknown, the initial condition

V(O)=V. must be replaced by integral condition (3.86). For each given

value of the Coulomb parameter h function V(s) is determined by

equation (3.78) and two supplementary conditions:

SV (s) s ds - 2slh; - (0) 0.

Now there can be found the fundamental characteristics of matched

beam during the canonical distribution of phase density. Equalities

(3.82), (3.86), (3.87) give equation for determining the mean radius

of the beam
se(h)

V(s)sds=2.(l-e-2 O)h.

0

Page 221.

Here

S(h)m-_ Rc, (3.88)

whence . . ..

R (h) RcSh) (389)

Finally, from expressions (3.80), (3.81), (3.86), (3.88) it is

possible to find density distribution of charge according to the beam

section for each given value of the Coulomb parameter:

Q Q0 i (A)
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p. there is average density of charge in the averaged beam

Q0

We investigate the behavior of function V(s). Since with

increase in s the density of space charge p(s) must decrease, then

with s>>l we have V(s)<<l. Consequently, with s>>l equation (3.78) is

reduced to the following

-aT \ V ds /

The asymptotic behavior of function V(s) in infinity is described by

the expression
V,s~e-  (3.9)

On the other hand, substituting V(s) from equation (3.78). in equality

(3.86), we obtain

2s= 2++.s + )]sds
0

or

V(t d V s V

According to expression (3.79), second term on the left side is equal

to zero. For first term we can use asymptotic expression (3.90). This

it gives a-2s 2 ,h. Thus, with s>>1

V (s) V'sZ e-
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In the near-axial region s<<1 and V(s) V,. Equation (3.78) gives

d S dV "\ I 2- 0- v h (2-V,) s.

whence

V =Voe- 2t . (3.91)

Equation (3.78) has the particular solution V(s) m2. with V=2

integral (3.86) diverges and gives h=-. Thus, with a change of the

Coulomb parameter within the limits O<h<- value V, respectively is

changed in the limits 0<V,<2. The behavior of function V(s) at the

different values of the Coulomb parameter is shown ir. Fig. 3.9.

Let us determine the frequency of transverse vibrations of

particles. Constant of motion (3.49a) taking into account equality

(3.75) is reduced to the form

HI(R, P)==P'-In VR) (392)
VE

According to expression (3.19), for the paraxial particles we have

H(R, P).- P1+ I- i.Rt,

o < . P'+ R'= const.

I~~~~~~~ il Vs l IlI t , .
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The projection of the phase trajectory of paraxial particle on each

of the phase planes X, X or Y, Y is ellipse. The medium frequency of

small transverse vibrations (to scale of axis 7) is equal to

= ! -2 V'
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V

V =01,Y I

0 1 23 4 S 17; I

Fig. 3.9.
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At the low values of current density we can assume for any s

Substituting approximation for function V(s) into integral (3.86), we

obtain

Vo e- 2sds = 2sh.
0

Consequently, with h<<l we have V.'-2s 2,h and

With s,-2 this value coincides with the frequency of small transverse

vibrations in the beam with the low phase current density during

singular distribution.
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Particles with the given value of constant of motion achieve

maximum divergence from the axis with P=O. For the peripheral

particles, which have the maximum amplitude of oscillations '. from

constant of motion (3.92) it follows

Particle with coordinates Y=Y=0 moves in plane X, X over the phase

trajectory

! /I JX (3Ini .\ 0in.=

Hence can be obtained the medium frequency of transverse vibrations

of peripheral particles during canonical distribution it.:

I Sj~ _ _2__at

Inc

¥ V (se

Let us compare between themselves different cases of the

stationary distribution of phase density.

In Fig. 3.10 is presented distribution of the averaged charge

density over the beam section for the cases of the degenerate and

canonical distributions. From the graphs/curves it is evident that at

the low values of the Coulomb parameter density distribution of
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charge by a radius differs significantly from uniform. With an

increase in the Coulomb parameter density distribution of charge in

both cases approaches uniform. Hence it follows that at the high

values of phase current density the parameters of beam must not

depend either on the value of the phase volume of beam, or on the

distribution of phase density.
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Fig. 3.10. KYey: (1). Singular distribution. (2). Canonical

distribution.

I'I

(3)

Fig. 3.11. Key: (1). Degenerated. (2). Canonical. (3).

lMicrocanoraical.
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Fig. 3.11 gives plotted functions

for three distributions of phase density. At the low values of the

Coulomb parameter these functions have a somewhat different course;

however in view of smallness h functions (3.93) do not manage to

noticeably diverge. Since with h-.* charge distribution according to

the beam section approaches uniform, then functions (3.93) for

different phase distributions must with h- * converge.

Actually/really, with h>>l for the microcanonical distribution from

formula (3.35) we obtain

f(h) / +2h (3.94)

In the case of singular distribution from formulas(3.67), (3.68) it

follows
f (h) 2 - (k) 2',kI

If k>>l, then

f (h) z 1/2h -k" *3.5

Finally, in the case of canonical distribution with h>>l we have

V(s)-2 to s>sc. From formulas (3.83), (3.86) we obtain

° 2sds- 2eh,.
0



DOC = 82105211 PAGE

or s2=2s'Th. According to expression (3.89),

j~h)~4t~2h.(J.96)

At the sufficiently high values of the Coulomb parameter expressions

(3.94), (3.95) coincide and give

f (h) = "2h. (3.97)

In the case of canonical distribution is obtained the somewhat

smaller value in view of the fact that the mean radius of matched

beam was determined for 1< 1. However, at the high values of h the

distribution of charge along the radius has steep/abrupt

shear/section. Assuming/setting with h>>l value q of close one to

unity, we obtain also for the canonical distribution formula (3.97)

instead of (3.96). Thus, in entire range changes in the Coulomb

parameter of function f(h) for all three distributions remain very

close.
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During the degenerate and canonical distributions the equations

of motion are nonlinear and the frequency of transverse vibrations

depends on amplitude. One should in this case consider that are

obtained the solutions for the stationary functions of distribution,

so that the nonlinearity indicated does not lead to an increase in
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the equivalent phase volume of beam. Formally the

retention/preservation/maintaining of phase volume is guaranteed by

Liouville's theorem. In this case have in mind such changes in the

forms of phase volume which could virtually lead to the result,

equivalent to a change in its value.

The dependence of the medium frequencies of transverse

vibrations on the Coulomb parameter for different distributions is

given in Fig. 3.12. Along the axis of ordinates is

deposited/postponed the ratio of medium frequency A at this

value/significance of the Coulomb parameter to value g0,of

appropriate h=O. The thickened line relates to the linear

oscillations, which correspond to uniform density distribution of

charge according to the beam section. Dotted curves correspond to the

frequencies of transverse vibrations of paraxial particles in the

nonuniform distributions. With an increase in the Coulomb parameter

of beam the frequency of particles, which move near the axis of

bundle, rapidly decreases. From the point of view of the excitation

of incoherent forced oscillations is important the frequency of

peripheral particles. The medium frequencies of peripheral particles

for the degenerate and canonical distributions are plotted/applied by

continuous thin lines. With a limitless increase in the Coulomb

parameter all curves in Fig. 3.12 must asymptotically pour.
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A2 s

Fig. 3.12. Key: (1). Canonical. (2). Degenerate.
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From Fig. 3.12 it is evident that the frequency of particles, which

reach the periphery of beam, during singular distribution virtually

remains sufficiently close to the frequency of linear in entire range

of a change in Coulomb parameter. During the canonical distribution

the effect of transverse pushing apart on the frequency of particles,

which reach periphery, proves to be less than highly expressed.

All stationary distributions examined with the accuracy of order

5-10o/o lead to one and the same numerical ratios between the

sizes/dimensions of matched beam and the Coulomb parameter of beam in
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the assigned applied fields. Thus, the self-consistent solutions

prove to be little sensitive to the form of the distribution of phase

density in the four-dimensional phase space. In this sense

four-dimensional phase volume proves to be the volume, which

corresponds sufficiently to large number of degrees of freedom.

Actually/really, let us examine four-dimensional sphere. If we divide

in half a radius of this sphere, then within the sphere of a half

radius will be located only 1/16 part of all particles during the

even distribution. Rest 15/16 all particles will lie/rest at the

external spherical layer. If we disregard/neglect the fields of the

particles, which fall into the internal sphere, then it is evident

that even distribution in the four-dimensional space must lead to the

macroscopic parameters, close to the appropriate parameters at the

microcanonical distribution.

The canonical distribution of phase density nearer than others

corresponds to real beams. However, assumption about the

microcanonical distribution leads to the simplest and easily

forseeable relation between the parameters of beam and parameters of

the focusing channel. From all that has been previously stated, it

follows that the questions, connected with the effect of Coulomb

pushing apart on transverse vibrations of particles, it suffices to

examine, using formulas derived from the assumption about the

stationary microcanonical distribution of phase density.

k6
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S 3.5. Coherent oscillations of particles in the beam.

If the axis of bundle coincides with the axis of the focusing

channel, then all phases of transverse vibrations are equally

probable. The fluctuations of particles in this beam are incoherent.

Beam is symmetrical relative to longitudinal axis in each of the

planes XOZ and YOZ, and the center of the ellipse, which limits

transverse phase volume, coincides since the origin of the

coordinates on the phase plane (see Fig. 2.13). Errors in the

focusing field (for example, displacement and the inclinations/slopes

of the magnetic axes of quadrupole lenses), and also the error in the

injection lead to the beam displacement as whole. In this case appear

the oscillations of the center of gravity of beam (Fig. 3.13a).

Appears coherent component transverse vibrations of particles.

Page 228.

On each phase plane x, dx/dT and y, dy/dr the region, occupied with

the representative points of the particles of the beam, is displaced

from the origin of coordinates and rotates around the initial point

(Fig. 3.13b). Let x,, y. - coordinates of the center of gravity of

beam, determined by the equalities
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VI.yo= y:,

where the addition is conducted through all N to particles in this

section. Let us note that in the equations of transverse vibrations

(2.53) the coordinates of particle x, y are counted off from the

magnetic axis of lens. Coordinates x, y, entering the Coulomb terms

of equations (3.24), are counted off from the axis of bundle. In

equations (3.24) the coordinates of particle x, y could be carried

out as the signs of brackets only on the assumption that the axis of

bundle coincides with the axis of channel. Let us introduce

coordinates x, y, calculated off the axis of channel, and coordinate

x, y. calculated off the axis of bundle,

Xx-x 0 ; YYo.

Then expression for potential of the proper field of beam (3.21) will

take the form

( + 'y ]+ const.

and equations of motion (3.24) can be rewritten in the form

T.+ Q. (T) X r (rX+ry) (

WT.-2 Q'(T) Y , . (F. + ,'d (Y -YO) = 0.]
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If we write N of such equations for each of the particles of this

section, sum up equations and sum divide into N, then we will obtain

the following equations of motion of the center of gravity of the

beam

dY + Q (() Y 0=0(3.98)

Wi



DOC = 82105211 PAGE

Fig. 3.13.
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Equations (3.98) coincide with the equations of transverse vibrations

of particles in the beam with the negligible phase current density.

Thus, in the free space the center of gravity of beam completes

transverse vibrations with the frequency, for which the proper field

of beam does not affect. Physically this is obvious, since Coulomb

forces are internal and their resultant must be equal to zero.

As it was indicated above, the metallic surface of circular duct

does not affect field within the axisymmetric beam, which is spread

along the axis of duct. But if beam section is not circular, then in

the proper field of beam appear the nonlinear terms, small in

II



DOC - 82105211 PAGE

comparison with basic linear field component (during uniform density

distribution of charge according to the section). Therefore the

effect of metallic walls on the frequency of incoherent they

disregarded/neglected. However, the dependence of the frequency of

coherent oscillations on the phase current density can arise only due

to the wall effect of channel, and therefore this effect cannot be

rated/estimated disregarding by metallic walls.

Let us examine the beam of round cross section, displaced

relative to the axis of circular duct with the ideally conducting

walls (Fig. 3.14). The length of the period of coherent oscillations,

as a rule, is substantially more than the transverse sizes/dimensions

of beam. Therefore the potential of the proper field of beam can be

found in the approximation/approach of two-dimensional problem.

Without loss of generality we can consider that the beam is displaced

only along the axis of abscissas. R,- radius of

beam; R, - radius of the metal tube, within which is spread the beam;

x, - center-of-gravity disturbance of beam relative to the axis of

duct. It is assumed that the magnetic axis of focusing field is

combined with the axis of duct. Let us introduce two polar systems.

The center of the first polar system r, o coincides with the axis of

duct; the center of the second system of coordinates s, a coincides

with the axis of bundle. Designations are clarified in Fig. 3.14.

Between both coordinate systems are following relationships/ratios
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S2  r2
- -

2 x cos qf
tgt fs (3.99)

rcobq-x 0

Let us assume first that the beam moves in free space

(R,



DOC = 82105211 PAGE

N4

Fig. 3.14.
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Then the potentials of the proper field of beam satisfy the equations
d2KUj 1 dU, I

d2L , I (3.100)

where L,(s) - potential of field within the beam; UL(s) - potential of

field out of the beam. Boundary conditions take the form

U, (R.) = U. (R.); -U-(R) -R) (3.101)

From equations (3.100) and boundary conditions (3.101) it follows

U, (s) = - s, + Uo;
U, (S) - -L R'In/' Q R'+ U-

Let now the beam of particles move within the circular ideally

conducting ducts. Vj.Ve - respectively the potentials of proper field
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within the beam and in the space between beam and surface of duct.

These potentials must satisfy boundary conditions on the surface of

the beam
i~ " V S- a). a (S, a)&RC;

(s. ),= = (s, a),=R,: (3.102)

(S, a),-R = (s, a),-i.

and on the surface of the duct

V., (r, (P),_,, 0- 0. (3.103)

Let us represent potentials V,. V, in the form

Vi r U, (s) + W (r, q)):
V . r )- U, (s) + IF' (r, 4p),

where T - certain harmonic function, which satisfies the equation of

Laplace * OaY I OV IF '
- -- + + 0-- - . (3.104)

Then Poisson's equation for potential Vi, the equation of Laplace for

potential V, and boundary conditions (3.102) in accordance with

equations (3.100), (3.101) are satisfied automatically. Boundary

conditions (3.103) lead to the equalities

I' (r, p),..R, = -U,r, I),-s,;

---(r. ) " , = - -- (r, ),- ,. (3.105)

Page 231.
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Function V(r.T,) must be final on the axis duct, moreover in view of

the obvious symmetry

'V r. q) ='PrI. -J

Dividing in equation (3.104) variable/alternating, we obtain the

general solution in the form of the series/row

W'(r. , ) = A , r'"cosmrn .

mwo

In order to satisfy boundary conditions (3.105), let us replace

variable/alternating in function U,(s). According to expressions

(3.99),

U,(r, 4p)= U --- 1 Inr2. In" I .2.cos q
40 R 4

On the circle with a radius of R,. with the center on the axis of the

duct

QRIn R2 QR 2 
2,0U, (R .op)-= ,o--- F I -- n -:- c~ in I--- cos -4

4? R 2 /e R-(3.106)

Latter/last function can be in turn, represented by Fourier series

U, (R, 4p) = B, (RT) cOS m .
rM-0

where with mfO

B R . - 2_.(T'()CO Td

After substituting here expression (3.106), we will obtain [28]

A. (RT) ==2 QRC,2em R



DOC 82105211 PAGE L07

Boundary conditions (3.105) are satisfied with

Ao = B,; A, =- QR'. /'Xo "..

Hence

I, - r - k± CO 1o1(1
2v r, M ~ RT/ T or

The potential of the proper field inside the beam, displaced relative

to the axis of the ideally conducting duct, takes the form

R r fl x 0  "Vi (r, -)= (r --2xr s ,o p - \ . Cos fl1( -

+ const.
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Intensity/strength of field at the center of gravity of the beam
lay1E.- - ( 0); E, = -? ;(,0),

or

S ( - Y-; EY 0. (3.107)

Analogous result was obtained in work [87] for the beam, which moves

between two metallic planes.
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Taking into account the conducting surface of duct the

oscillations of the center of gravity of beam in plane XOZ are

described at the nonrelativistic velocities by the equation
d
2
x0rno -- =eE -F.,,

where F, - focusing force, which acts on the particles in the center

of gravity of beam. After transition to the independent variable 7 we

will obtain
d'xo S2  F _ eS' E=0.
W s mov-- MOO

If beam is spread in the space, free from the metallic surfaces, then

RT=co and E.=O. The oscillations of the center of gravity of beam in

this case are determined by equations (3.98) or, in the smooth

approximation/approach,

Since is examined the averaged beam, one should assume

Let us substitute into formula (3.107) for the density of charge p

its expression through the complete (peak) beam current

Q

and we will be restricted to linear approximation to the proper field

I
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Thus,

daxo elS'
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The recording of latter/last equation will be simplified, if we

switch over to characteristic Coulomb length (3.23)

ds- + AD--- J = 0-
~R'.

The frequency of coherent oscillations of beam as follows depends on

a peak beam current (being determining parameter r,) and a radius of

the aperture of the channel

R,

2 - o- -d (3.108

Earlier was obtained expression (3.52) for the frequency of the

incoherent of particles in the intense beam. Equalities (3.52) and

(3.108) formally coincide, but they are distinguished by the fact

that in the denominator of Coulomb term (3.52) stands the square of

the mean radius of matched beam, and in expression (3.108) at the

same place - square of a radius of the complete aperture of channel.

Both frequencies with an increase in the intensity of beam decrease;

however, differently. The frequency switch of incoherent oscillations

depends on phase current density; explicitly this dependence is

expressed by formula (3.39). The frequency switch of coherent
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oscillations on the phase volume of beam does not depend and is

determined with the assigned aperture of channel only by peak beam

current and by energy of particles. With an increase in the energy of

particles decreases parameter ra. Since the complete aperture of the

focusing channel must be selected taking into account possible forced

U --- lations of beam as whole, then it exceeds the maximum amplitude

of the free oscillations: R,>R,. Therefore the Coulomb frequency

switch of coherent oscillations proves to be smaller than for the

incoherent ones. In the beam with the essential phase current density

occurs splitting/fission of the frequencies of transverse vibrations:

the frequency of the coherent oscillations; it r-mains close to the

frequency of particles in the beam with the zero intenisity, and

frequency of incoherent relatively rapidly decreases with an increase

in the phase current density.

In S 3.3 is given a numerical example to beam matching with the

strong-focusing channel of the linear accelerator of protons with the

peak beam current 1-400 xa and phase volume V, = 0,2 cm-mrad. In the

case g.-0.93 examined; h-0.68. Characteristic Coulomb length (3.23)

with given speed of injection A-0.04, wavelength of accelerating

field X-2 m and period of focusing field S-2A will comprise at the

entrance of channel r, = 0,32 cm. The mean radius of matched beam

(3.35) is equal to R =0,4 cm. The medium frequency of incoherent

oscillations, calculated according to formula (3.39) or (3.52),
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proves to be equal to g=0. 48 and decreases almost two times in

comparison with the frequency in the beam with the zero intensity. If

a radius of complete aperture R, = 1 cm, then the frequency of

coherent oscillations (3.108) descends only to or = 0,87.
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S 3.6. Deliquescence of the drifting beam.

Phase current density - this is one of the most important

parameters of those characterizing the quality of the beam, injected

into the accelerator. For determining the phase current density it is

necessary to measure the beam current and projection of

four-dimensional phase volume on the phase planes (transverse phase

volumes of beam). Different experimental installations, intended for

measuring the transverse phase volumes, repeatedly were described in

the literature [61, 62, 88-99]. In all these installations the phase

volumes were determined on beam blowup, which drifts in the space,

free from the applied fields. The deliquescence of the drifting beam

it is connected with the disordered scatter of thermal velocities and

with the action of its own coulomb field of beam. Therefore it is

important to consider the effect of proper field to the parameters of

the drifting beam or to utilize the measurement procedure which would

eliminate this effect. The motion of intense beam in the space of

free drift is examined in works [100-102]. However, in the works

indicated it was assumed that the particle motion is determined only
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by the pushing apart Coulomb forces; the scatter of thermal

velocities was considered as the negligible. Meanwhile the estimation

of error, introduced by the transverse pushing apart of particles

into the measurements of phase volumes, requires the simultaneous

account of the phase volume of beam and its proper field.

The phase volume of beam it is possible to measure directly

according to an increase in the transverse sizes/dimensions of beam

on the assigned path of drift. But more accurate results can be

obtained, if to consecutively/serial'y determine the deliquescence of

the narrow beams, cut out from the complete beam with the aid of the

special diaphragms. In the latter/last cases it is possible to find

the distribution of phase particle density according to the volume,

which is important for the establishment of the boundaries of the

phase volume of real beam. Fig. 3.15 gives the installation diagram

for measuring the phase volume by the method of "two slots". The

first slot isolates all particles with the assigned coordinate xe.

The second slot makes it possible to establish/install the current

distribution of the chosen particles according to the path

inclinations dx/dz. After second diaphragm is established/installed

the current-collecting device - faraday cylinder. Since both slots

pass particles with all values of y, dy/dz, available in particles

with the fixed/recorded coordinate x., after the circuit/bypass of

all values x we obtain the projection of phase volume on plane x,
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dx/dz (emittance of beam). Method "four slots" is schematically shown

in Fig. 3.16. The pair of slots in the first plane isolates particles

with the given value of coordinates x., y0 . The second pair of slots

makes it possible to measure the current distribution of the chosen

particles according to the path inclinations dx/dz, dy/dz.

Page 235.

if we place horizontal slot in the first plane to position y.=0, and

horizontal slot in the second plane to position dy/dz=0, then this

method makes it possible to determine the section of four-dimensional

phase volume by plane y=O, dy/dz=0. As it was shown in S 3.2, when

the boundary of four-dimensional phase volume can be approximated by

hyper-ellipsoid, the projection of phase volume on plane x, x

coincides with the section by its coordinate plane y=y=O [see

equations '3.14), (3.15)].
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Fig. 3.15.

/1Y

Fig. 3.16.
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Series circuit by both pairs of the slots of all points of the cross

section of beam in the first and second planes it is possible to

measure the distribution of phase density in the four-dimensional

space.
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Other methods of the consecutive irising of beam in principle

are reduced to one of that described above. For example, for slot in

the second plane can be replaced with light sensitive emulsion with

the subsequent photometric measurement of the places exposed.

Let us examine particle motion on the section of the drift

between two planes. Transverse phase volumes on planes x, x' and y,

y' can prove to be unequal. In particular, this knowingly occurs in

the diaphragmed beam with the method "two slots". The fact indicated

must be taken into consideration in the equations for the envelopes.

Particle motion in the drifting beam is described by equations (3.7),

if we assume Q,(T)= Q()= o.Since the focusing fields are absent,

parameter S it is possible to consider dimensionless and to place it

equal to unity. Then as the independent variable will figure

longitudinal length raz:

dz'

di j - 0: 3 1 9

Let the stationary distribution of phase density - microcanonical

(3.13), so that current density is distributed evenly over the beam

section, and equations (3.109) - linear, with the divided

variable/alternating (30J. Since the independent variable in

equations (3.109) is dimensional, let us change the conditions for
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the standardization of the dimensionless complex conjugate pairs of

fundamental solutions (3.65)
* dX,_ 2i

x -- x - - -Ex

dX * dX 2iX :.L - -- r.
Values E. E must have a dimensionality of length. Let us represent

fundamental solutions in the form (3.8). Rate of change of

phase-fundamental solutions proves to be equal to

dV dy 1

Having repeated the reasonings, given in S 3.2, we will obtain the

following first integral of equations (3.109)

, dx dy NI dx d( Fx - dy T u _ y

S7'f Z T(
+ ( X
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Let us assume that the representative points of particles lie/rest on

the hypersurface
F (X,, y~, l

T. d'z

According to expressions (2.310), projection of this hypersurface on

the phase planes they are limited by the ellipses

(a.,X' aX)2+(__ ) =1,\ E.,

(co, - 0,0) + I/ =

The products of the semi-axes of ellipses can be determined according

to formula (2.114) and are equal respectively to E. and E. In view of

the fact that the ellipses are examined on planes x, dx/dz and y,
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dy/dz, values E., E. are regarding the emittances of beam. Projection

of hypersurface on plane x, y

Hence it is apparent that envelope of particles are determined by the

expressions

r, (z) = Eoa (z); r, (z) = E CZ).

The linings/calculations, analogous to those given in S 3.2, 3.3,

give the following equations for the envelopes

d2 r. E2 2a2  31 )
dzl' T3 rx r

Y~f E" Wa
- J- - a=0.

r, r -- r,

Parameter a in equations (3.110) is dimensionless and equal to

l/21

where I - the full current of beam; I. - standard strength of current

(3.22):

Let us examine first the pulverization/atomization of the

non-stopped-down axisymmetric beam with emittances E,= E.=E and

initial conditions

r,(O)=r(0) =r.;

In view of the symmetry of equations (3.110) we have rx(z)=-r,(z)=r(z}. SO

that a change in the envelope of the axisymmetric beam is described
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by the equation

d2r EZ a 2

--- =0. (3,111)
dz

2  ro
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Equation (3.111) is the generalization of the equation, investigated

in works [64, 100-102], and are considered both space charge of beam

and disordered scatter of the transversing speeds of particles in the

beam. First integral of equation (3.111)

,dr>s .eE ( +

Hence we have
(r, ro)'

Z (3.112)
+ ~ ~ i j- --2 ]1 S _ Sis-i

Integral (3.112) determines the dependence of the current radius of

the diffusing beam on the path of landing run z. In the literature on

electron optics usually is examined case E<rer;, E < aro, corresponding

to beam with the negligible scatter of transversing speeds. In this

case integral (3.112) is reduced to well known expression [64]

z . d s (3.113)
"0 t VF(r.)'+25 in s*

Formula (3.112) makes it possible to now examine another limiting

case - beam blowup with the negligible current. In the latter case of

a<<E/r, and from expression (3.112) it follows



DOC - 82105212 PAGE

+ r+ Z ) + / 6 .(.14K. ro j ' 314

With E=0 from equality (3.114) follows the trivial result

r= r- roz.

The same result can be obtained from equality (3.113) with a=0.

If the space charge of beam is negligible, then formula (3.114)

makes it possible to determine emittance and initial angular

separation of beam. For the experimental determination of the values

indicated ratio r/r, must be measured at two points: z, and z,, after

which it is possible to find both of the unknowns E and r'.. In the

general case for determining of emittance and initial angular

separation of beam it is necessary to additionally know full current

of beam and energy of particles, which makes it possible to

previously calculate parameter a. After this of two equations (3.112)

by numerical methods determine the unknowns r2 ,/E and (r')'/E. If

with z-0 beam has a crossover, then it suffices to measure ratio r/r.

only at one value/significance of z.

Page 239,

The method of measurement of emittance indicated is less precise than

the methods of the consecutive irising of beam.
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Let us rate/estimate now space-charge effect on the disagreement

of the separated part of the beam in the measurements of phase volume

by the methods of consecutive irising. Let us assume that the

measured beam possesses axial symmetry and its phase volume is

limited in the four-dimensional space x, y, dx/dz, dy/dz by the

hyper-ellipsoid

A(x2'y2)+B(x-'y'2)+2C(xx'-yy')=l.

(3.115)

Beam section by plane XOY exists

x2 + y2 = R2,

where

R V'BC2

The emittance of beam for each of the phase planes

E.= I

VAB-C2

is connected with a radius of section R with relationship/ratio

R-EV/-. Let us isolate the part of the beam by narrow vertical slot

with the width 2Ar, also, with coordinate x, (see Fig. 3.15). The

particles of the chosen part of the beam occupy on the phase plane x,

x' the narrow band with a width of 2Ar (Fig. 3.17a). The maximum and

minimum ordinates of band are approximately equal to the square roots

equation
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_ 2 C o .x- =0,
X'

2 --- X' o
whence

Cx0 * I / / 4 C'"

The half-height of band is equal to

AX' = I I- /- , 2

We approximate the chosen part of the emittance on plane x, x' by

ellipse. Then the emittance of the chosen part of the beam is equal

to E=ArAx' or

E,= E -
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b

Fig. 3.17.
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Further, let us find the projection of the phase volume of the chosen

part of the beam to plane y, y'. Particles with fixed/recorded

coordinate x. fill the three-dimensional ellipsoid

F-Ay'+B(x"+y")+2Cxox +2Cyy' = I -A.,.

Values x, which correspond to points in the curve, which covers the

projection of this ellipsoid, are determined by equation 2--=o. Hence

x'=-(C/)x. and projection is described by the equation (see Fig.

3.17b)

Ay' -4- By" + 2Cyy'=1,

where

A.= A B,= B C'= . (3.117)

O x0.)2
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Emittance of the chosen part of the beam on plane yy'.

E&,=E( 14)

Let us cut out now beam by supplementary narrow horizontal slot with

the width 2Ar, also, with coordinate y, (see Fig. 3.16). According to

expression (3.116) the half-height of band on plane y, y' will be

equal to
AY 1 _Y3(A, - c

Assuming/setting for the part of the beam, isolated with two mutually

perpendicular slots, E,=ArAy" and replacing A,, B,, C, by appropriate

expressions (3.117), we will obtain the equality

In view of axial sy.mmetry E.=E,.

In the diaphragned beam, isolated with two intersecting slots,

emittances E=1, E,, are equal and for the evaluation of space-charge

effect it is possible to use expression (3.112). The diaphragmed beam

has the zero initial disagreement (see Fig. 3.17a), so that for it

r'.-O and instead of integral (3.112) we obtain

( r / l a ) 2 d
Z a 2  (3.118)

Parameter a, in interval (3.118) corresponds to the diaphragmed beam
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and in the constant current density in the section of complete beam

is connected with parameter a of complete beam with the

relationship/ratio

Hence
iijr uR Ir

The coefficient under the integral sign (3.118), connected with the

Coulomb pushing apart, in the diaphragmed beam proves to be

substantially less than in the complete beam. The effect of Coulomb

pushing apart on the velocity of the deliquescence of the diaphragmed

beam falls from the decrease of the width of slots, if only slots are

not located on the edge of beam. Physically this is connected with

the fact that the emittance of the chosen part of the beam decreases

proportional to the width of slot (since with the irising far from

the edge of phase volume Ax'-const; see Fig. 3.17a), but beam

current it falls proportional to the square of the width of slot. If

slots are sufficiently narrow, then Coulomb pushing apart can be

disregarded/neglected. This fact is the important advantage of the

methods of the consecutive irising of beam.

Function s ln s calculation is more rapid than s-1. Therefore in

proportion to beam blowup the effect of Coulomb pushing apart is

amplified. Let it be the drift of the stopped-down beam for reasons
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of the accuracy of measurements it must be as more as possible.

However, to disregard/neglect the effect of the proper field of beam

is possible only in such a case, when the path of drift is limited.

Ar

Coulomb pushing apart can be disregarded/neglected, if

' -%rNx1 £xt S~ ~InS a~' - I c-- . 19

Requirements for the accuracy of measurements lead to condition

I. Then frot inequality (3.119) it follows

I maKc < X'11 RU,'(3.2'
" r 2T r5x

Let now the diaphragmed beam be isolated only with one slot, for

example vertical. The initial sizes/dimensions of envelopes are equal

to

r(0) =Ar; r(O)R 0 I = R
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If slot is not located on the edge of beam, then the chosen part is

the strip/tape beam which has r.(0)<r,(0). On the limited path of drift

will be preserved inequality r.<r, and a change in the envelopes will

be described approximately by the equations
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d2rX E.' W1
." .3 • =0: (3.121)

darY E, 2al
dz2 r 0

where a- a2 r- (0) r(0)
aa R2

Let us replace in equations (3.121) the variable/alternating

u() r= (z) rU (z)= r = (;z) ; uv (Z) = r
U .(Z) F. (0)r. (0)"

In the designations

e= E, ; k. r- () ; b2= 2a3
e [r= (O)12 k= r() 'R2

of equation (3.121) let us rewrite in the form

d'u, es b2

dz2  
I~ u

(3.122)
dZ2 u3Y up

moreover u,(O= u.(0)= 1; k < 1. From equations (3.122) it is evident

that a relative change of the envelope in the vertical plane is

considerably less than in the horizontal, since second equation

(3.122) corresponds to beam with the relatively small phase volume

and the low current. In other words, strip/tape beam diffuses so that

in essence occurs the relative expansion of its narrow side.

Therefore for further estimations we can assume u, (zi ; 1. In the

approximation/approach indicated first equation (3.122) gives

el + 2b2 (u 1 .d2 -UY
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Toward the end of the section of drift uz==uaxc. The effect of the

proper field of the diaphragmed beam can be disregarded/neglected, if

2b' (u ..c-1) . ez ( I - _1-.'

After assuming r.,.,c Ar or um.ac > 1, we will obtain

,,2
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Hence
a . - E 1

For the non-stopped-down beam the condition under which it is

possible to disregard the effect of proper field to beam blowup,

follows directly from integral (3.112). Let at the initial point of

drift the beam have a crossover with a radius of r.=R. Coulomb

pushing apart can be disregarded/neglected, until beam blowup exceeds

the values, determined by order of value by the inequality
IrMa~c ! ,' E N,2(3 24
--n -r am- << (3.124)

Condition (3.123) is harder/more rigid than condition (3.120).

The method of four slots makes it possible to suppress the effect of

the proper field of beam better than this is reached by the method of

two slots. Let us examine a numerical example. Let the measured beam

have transverse phase volume, approximately equal to V,=0.2 cm-mrad,

with the full current 1-200 mA and at the given particle speed

A-0.04. Let us accept the width of each slot of the equal to 1 mm, a
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radius of beam in the crossover I cm. Then E=5 cm-mrad; a=6.3-10-';

E/aR=0.8; E¢r=16. For the non-stopped-down beam condition (3.124)

gives

In r -, 0,32; %-' 1.4.
R P

Thus, to determine phase volume on the deliquescence of the

non-stopped-down beam without taking into account Coulomb pushing

apart in the assigned parameters is virtually inadmissible. For the

beam, isolated with one slot, we will obtain
rmare < 200 1 -.

Ar 2

If slot is displaced to position x.-0.9R, then ' 40. which makes
•\r

it possible to still conduct measurements with the necessary

accuracy, without taking into account three-dimensional charge of

beam. For the beam, isolated with two slots, we have

In rmac < 400 I- -- I.,"
-- < R 2

or with Vxj+y.=0.9R.

in--Kam- <<80.
Ar

Latter/last inequality virtually does not limit the permissible

expansion of the diaphragmed beam.
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S 3.7. Limitations of beam current in the strong-focusing linear

accelerator.

The mean radius of matched beam in the strong-focusing channel

of linear accelerator grows/rises with an increase in the transverse

phase volume of beam and with an increase in the peak beam current.

Since the aperture of channel is limited, proves to be limited the

maximum peak beam current in the assigned fields. The ratio of the

mean radius of matched beam with the given value of the Coulomb

parameter h#O to the mean radius of the beam of zero intensity with

the same transverse phase volume is determined by formula (3.93).

Multiplying numerator and denominator on the left side of equality

(3.93) at the maximum value/significance of the modulating function

l+q(r), we will obtain that in the smooth approximation/approach

function (3.93) determines the relation of the maximum values of the

envelopes:

r__c f(h).

Beam is passed without the losses through the focusing channel, if

r..c<,a, where a - radius of the aperture, diverted under the free

fluctuations of particles. Beam current reaches the maximum

permissible value/significance when rac =a .Hence
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ro

F7 (3.125)

By latter/last equality is assigned the maximum size of the matched

beam of zero intensity, which has the same transverse phase volume,

as the beam of the maximum permissible intensity. The transverse

phase volume of the beam of zero intensity is determined by formula

(2.125) and can be represented in the form

V. ., ' t 2

where a, - minimum value/significance of the frequency of

transverse vibrations of particles in the beam of zero intensity.

After substituting expression (3.125) into the latter/last formula,

we will obtain the maximum phase volume of the beam which can be

passed through the focusing channel at the value/significance of the

Coulomb parameter hW0

= " " a2

cf2(h)

or

V fsl(h) ,

where V. - channel capacity (2.126).
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In the principle the behavior of function f(h) depends on the form of

the stationary distribution of phase density. However, as was shown

in S 3.4, the behavior of this function depends on the form of
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distribution very weakly and for further estimations it is possible

to utilize function (3.35), obtained for the microcanonical

distribution

f(h)= i- I .

Thus,
,.= ,..(I I - -h) .,i ,

Since the Coulomb parameter is proportional to phase current density,

with an increase in the phase current density of beam the maximum

permissible phase volume of the beam, passing through the channel

without the losses, decreases.

Let us assume that the transverse phase volume of the beam,

injected into the accelerator, is lower than the capacity of the

focusing channel of accelerator. If phase current density in the beam

is small, then will be fulfilled also inequality i, < i.- From an

increase in the phase current density value v,,h falls. The maximally

high value/significance of phase current density, which corresponds

h h,,,C, will be achieved/reached when U,, v.

V.= ( I t- , -h.,,,,.)

Hence follows

= \ - .1.27)

Expression (3.127) determines a maximally possible peak beam current

at the given values of the channel capacity and transverse phase

volume of beam. Taking into account designation (3.36) we will obtain
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(1031

2,

/sa uc = 7 
2 (I 4U I - -

With the assigned energy of particles and in the assigned parameters

of channel a maximally possible current decreases with an increase in

the phase volume of beam. An increase in the current of injection

!, .makes sense as long as !., <, < If an increase in the current

of injection is accompanied by a simultaneous increase in the

transverse phase volume of beam, then maximally possible current ',

descends. In this case the current of injection can prove to be not

used completely. With an increase in the current of injection they

increase in essence only of the loss of particles in the accelerator.

Hence it is apparent that an increase in the current of injection is

effective only in such a case, when simultaneously there does not

occur a considerable increase in the transverse phase volume of beam.

A considerable increase in the current of injection must be

accompanied by the appropriate increase in the phase current density

of beam.

Maximum peak current is reached when t V and it is equal to

.1_! T Vf[o.  (3. 128)

Page 246.

Taking into account expression (3.128) we have
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1 fit arle- ,3 I 129)

A maximally possible peak current is virtually equal to maximum, if

the transverse phase volume of beam approximately/exemplarily three

times lower than channel capacity. Further reduction in the phase

volume of beam, if it can be realized, already insignificantly

affects the strength of maximally possible current of the accelerated

beam. On the other hand, the increase in the Coulomb parameter,

connected with an increase in the phase current density, leads to

unjustified lowering of frequency of incoherent.

An increase in the amplitude of transverse vibrations due to the

random errors in the focusing fields is approximately determined by

exprpis±(n (2.280):

'xAA (3.130)

where vb = W,3 ,, T0, and sum is taken on the basis of all independent

sources of errors in each period of focusing field. The

disturbances/perturbations of path inclination in each lens, in view

of the fact that the disturbance/perturbation occurs in the small

section of longitudinal axis, do not depend on the forces of Coulomb

pushing apart. Actually/really, after replacing envelopes in the

equations of motion (3.24) by appropriate expressions (3.29a) and

disregarding small components/terms/addends q- q,. we will obtain
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Equation (3.131) it is possible to use for describing the particle

motion in the section of one lens with Q=const. From equalities

(3.32), (3.34) it follows
r, ra '-2 2 2h

Relation r monotonically is changed from zero (with h=0) to m2.

with h--)-. Thus, always
( ra ",2

But in the smooth approximation/approach, according to expression

(2.229a), g 2.--qQ and, since lql<<l, we have g',<<Q. Hence

2 Q.
Page 247.

If oscillations are examined in the short section of change r, then

it is possible to disregard the Coulomb term of equation (3.131). The

disturbances/perturbations of oscillations in the section of each

lens can be calculated on the assumption that the phase current

density is negligible. Space-charge effect on forced oscillations of

particles is determined only by the frequency switch of oscillations.

Let us divide sum (3.130) into two parts

2 (V ', -i(v -) --
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Into the first sum enter the disturbances/perturbations, connected

with the external errors (displacement and the inclination/slope of

the magnetic axes of lenses), and into the second -

disturbances/perturbations, connected with the parametric errors

(scatter of the gradients of focusing fields, the rotation of median

axes). External errors act on all particles they equally and displace

beam as whole. The effect of external errors depends on the frequency

of coherent oscillations vd. Parametric errors lead to incoherent

forced oscillations with minimum frequency v;. of that connected with

v0 ,,. the relationship/ratio, analogous (3.38),

=61,, (W f -h:--I)

The frequency of coherent oscillations weakly depends on the space

charge of beam, but frequency of incoherent with an increase in the

Coulomb parameter substantially descends. The portion of incoherent

disturbances/perturbations grows/rises, as which proves to be

necessary to stiffen either all structural/design and electrical

allowances or only allowances for the parametric errors. Thus, a

considerable reduction in the frequency of incoherent is undesirable

and, therefore, is undesirable an excessive increase in the phase

current density. From that presented it is evident that the

relationship/ratio

3

is optimum. It should be noted that when I = , and V, = 1,3 V, the

allowances for the parametric errors in the initial part of the
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accelerator descend approximately/exemplarily three times.

Maximally possible peak beam current in the focusing channel is

higher, the greater the value of limiting current (3.128). Limiting

current depends only on the parameters of accelerator and it is not

connected with the quality of beam. For the analysis of formula

(3.128) the latter it is convenient to convert, utilizing expressions

(2.106), (2.126), which are determining the medium frequency of

transverse vibrations and channel capacity

InPeA (-s-> a P '3 ,Il. (3.132)

We investigate the basic methods of increasing the limiting current

of beam..

Page 248.

With the assigned structure of channel values j. and v" are

connected unambiguously, since A. - the medium frequency of

transverse vibrations to scale 7, and v4 - minimum value/significance

of this frequency on the same scale. The parameter u. in the limits

of stability region has certain optimum value, which ensures value

v4, close to the extreme, with the smallest expenditure of power for

focusing. Optimum selection noncritically depends on the structure of

channel. Thus, product i0o4 is determined during the optimum selection

virtually unambiguously.

C c a nel Th s pro uc 
I is de e 
mi e du i g t 

e o ti uIee 
t o
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Thus, limiting current it is possible to affect only by a change

in the energy of injection W. and ratio of the aperture of

accelerator to the period of focusing field. In the assigned ratio

S/P) we have . With the energy of particle injection into the

ionic accelerator Lorenz's factor remains still in effect equal to

unity, so that limiting current is proportional to square root from

the energy of the injection

An increase in the energy of injection is hindered/hampered due to

the complication of operation and rise in price of the injector, as

which usually is utilized the electrostatic accelerator.

Further, limiting current increases proportional to the square

of the ratio of the aperture of channel to the period of focusing

field. In the accelerating systems with drift tubes with an increase

in the aperture deteriorates the configuration of high-frequency

field in the accelerating clearances and descends the factor of

transit time. However, this fact is not deciding during the selection

of aperture. Thus, in the majority of the acting proton accelerators

it would be possible to still considerably increase aperture without

a noticeable reduction in the factor of transit time. More essential

prove to be the limitations, connected with an increase of the
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magnetic core induction of quadrupole lenses with the assigned

gradients of focusing field. In the magnetic quadrupole lenses is

limited maximum induction B., in the poles, generatrices to Linz.

Analogous limitations to the maximum stress/voltage between the

electrodes lenses. Let us examine in more detail the case of magnetic

lenses. The maximum gradient of the focusing field

Bqame

Gl~me C a+ Aa'

where Aa - part of the aperture, diverted under induced oscillations,

regions with the large nonlinearity of field and the thickness of

aperture tube. Let us introduce for the simplification the equivalent

value of the maximum induction

Aa1+--
a

Page 249.

Then

Gmaxc

Ratio a/s can be represented in the form
a S.

If assigned the parameters #., D/S and the factor of defocusing .,.

then is fixed/recorded the hardness of the lens

K=S2' 
V

'\-S/ p*

As is noted in S 2.6, the necessary gradient of focusing field weakly

depends on ratio D/S, somewhat increasing with the decrease of this
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relation. With selection A is actually fixed/recorded product SIG.

Consequently, with given ones i. and energy of injection all values

in expression (3.133) are fixed/recorded except the period of

focusing field. Thus,
a
S

Hence it follows that from the point of view of the guarantee of the

permissible induction in the poles of lens with an increase in the

period of focusing field S it is possible to increase the aperture of

channel proportionally S2*. In this case the limiting current also

increases proportionally S2 .

However, in the linear accelerators increase S is limited by the

allowed values of the factor of defocusing and, therefore, possibly

only with a simultaneous increase in the wavelength of accelerating

field. Actually/really, from the expression for the factor of the

defocusing

it follows that at the fixed values of specific acceleration and

energy of injection the period of focusing field can be raised only

proportional to the wavelength of accelerating field S-X, and if is

fixed/recorded the amplitude of middle field, then S=l.

If the aperture of channel is increased more rapidly than the

wavelength, then, as it is noted, the factor of transit time in the
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accelerating system with drift tubes deteriorates. However, within

considerable limits this increase of the aperture is possible that it

makes it possible to raise the intensity of beam in the linear

accelerators due to an increase in the sizes/dimensions of

accelerator.

At the selected optimum value m, the necessary value of gradient

GUH, can be lowered, and aperture is respectively increased due to the

decrease of the factor of defocusing T.

Page 250.

The latter is achieved by the decrease of the absolute value of

synchronous phase. However, this it conducts to the decrease of the

capture region of particles into acceleration mode and, therefore, to

the decrease of average/mean beam current.

Under W = const and other equal conditions an increase in the

wavelength of accelerating.field from 1.5 to 2 m raises limiting

current 1.8 times. If the transverse phase volume of beam proves to

be comparable with the channel capacity, then maximally possible

current (3.129) increases still more significant, since an increase X

at given value vO makes it possible to substantially raise channel

capacity. Actually/really, according to expression (2.126),

LJ
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so that channel capacity is proportional to W3.

For the numerical estimations of a maximally attainable

intensity of the accelerated beam it is necessary to have data about

the phase volumes of the beams, injected into the linear accelerator.

Are at the present time measured the phase volumes of proton beams

for some ionic sources. Unfortunately, the results of measurements,

obtained by the different authors, is difficultly to reliably

compare, since processing experimental data was performed employing

different procedures. For example, in work [95] is introduced a

priori assumption about the axial symmetry of beam. In this work was

determined the integral current distribution of beam by

four-dimensional phase volume, i.e., the dependence of the value of

four-dimension~l volume from the portion of the full current,

included in this part of thc volume. In work [61] it is a priori

assumed, that the sections of four-dimensional volumes by hyperplane

ymy'm0 coincide with the projections of these volumes on the phase

plane x, x', and was determined integral distribution on plane x, x'

not of the full current of beam, but the current of particles,

isolated with slots y-0, y'=O.
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From the results of work [95] it follows that in the center

section of the four-dimensional phase volume of the beam of protons,

generated by duoplasmatron [2, 62, 104-112], the phase density is

distributed evenly. According to the data of this work the value of

four-dimensional phase density in the center section of the volume

does not depend on the mode/conditions of ionic source. On the

periphery of four-dimensional volume phase density decreases up to

zero. Apparently, the irising of intense beam would make it possible

to obtain beam with the highest ratio of full current to the

four-dimensional phase volume.

According to the data of the authors, who measured the phase

volumes of the proton beams, which contained from 90 to 99o/o of full

current, the phase current density, defined as the ratio of full

current to the two-dimensional projection of phase volume, proves to

be lying/horizontal within comparatively narrow limits.

Page 251.

Experimental data testify, apparently, about the fact that the phase

current density weakly depends on the mode/conditions of source and

over a wide range of a change in the beam current remains

approximately constant. According to the data of work [93], phase

current density in the beam, generated by duoplasmatron and measured
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at the output of the high-voltage accelerating tube, at different

modes/conditions of source lies/rests in the limits of 150-220

mA/cm-mrad with the beam current to 150 mA. Phase current density in

the beam, generated by high-frequency source [2, 113-115], somewhat

below. For the modified source of the type of duoplasmatron [1123

work [951 gives the value of phase current density 300 mA/cm-mrad

with the beam current to 480 mA.

Let us accept as the original value of phase current density at

the output of the injector

j°=.-=30 mA/cm-mrad.

This value can be before the entrance into the linear accelerator

raised. In the beam of protons, which emerges from the electrostatic

accelerator (injector of linear accelerator), the particle they are

distributed evenly on the phases of radio frequency voltage of linear

accelerator, and the scatter of particles on the longitudinal

impulses/momenta/pulses is substantially less than the vertical

spread/scope of separatrix. Between the injector and the linear

accelerator it is possible to establish/install the buncher, intended

for increasing the portion of particles, seized into acceleration

mode [2, 116-1181. Klystron type buncher, usually utilized for the

ionic accelerators, is the cavity resonator, loaded with two span
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half-tubes. High-frequency field in the clearance between half-tubes

modulates the longitudinal velocity of particles. Let us assume that

a phase difference between the field in the buncher and the field in

the first resonator of linear accelerator is selected in such a way

that the particle, proving to be synchronous in the accelerator,

flies the clearance of buncher at the moment of the passage of the

field through zero toward increase. The velocity of synchronous

particle in the buncher will not change. Particles, which

anticipate/lead synchronous in this period of radio frequency

voltage, will be inhibited, and the particles, which move after the

synchronous, will accelerate themselves. In drift space between the

buncher and the linear accelerator occurs grouping of particles. The

length of drift is selected so that up to the moment/torque of the

entrance of synchronous particle into the linear accelerator of the

phase of remaining particles they would be as near as possible to the

synchronous. Thus, even prior to the beginning of acceleration beam

is modulated on the density along the longitudinal axis. Clusters

follow with frequency of accelerating voltage. Buncher transforms the

phase volume of beam on the plane of longitudinal vibrations

V. g =P-11: due to an increase in the scatter of particles in the
p-

longitudinal velocities it is reduced the scatter of the larger part

of the particles on the phases of accelerating field so that the

phases of the majority of the particles, injected into the

accelerator, would prove to be within the capture region.
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The strain of phase volume on plane V. g is shown in Fig. 3.18.
Pu

Region 1 corresponds to the phase volume of beam on the entrance into

the buncher. After sinusoidal modulation of the longitudinal

velocities of particles in the clearance of buncher the phase volume

is converted into region 2. Region 3 - the result of the strain of

phase volume in drift space. The same figure gives the boundary of

the region of the capture of particles to acceleration mode. The

process of preliminary beam bunching leads to an increase in the

phase density in the four-dimensional phase volume of transverse

coordinates and impulses/momenta/pulses. Actually/really the buncher

in the first approximation, does not affect the transversing speeds

of particles; therefore the scatter of particles on the transversing

speeds in drift space is not changed, but increases a number of

particles in each cross section of beam in the region of clustering.

This effect does not contradict Liouville's theorem. In the equations

of motion, which correspond to buncher and to the section of drift

under the usual simplifying assumptions the variable/alternat ng are

divided. Therefore in accordance with Liouville's theorem ust be

retained the value of phase volume for each of three phase planes.

However, because of modulation of the longitudinal velocities the
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condition of retaining/preserving/maintaining the number of particles

in the element/cell of the four-dimensional volume of transverse

coordinates and impulses/momenta/pulses is not satisfied, so that the

corollary of Liouville about the retention/preservation/maintaining

of phase density in this case does not occur.

At the absolute value of synchronous phase in limits of 30-40

buncher makes it possible to raise average/mean particle density in

the clusters approximately/exemplarily two times [2]. Therefore

during the estimation of the maximum peak current of clusters in the

accelerator it is possible to be oriented toward the value of phase

current density j=600 mA/cm-mrad. Since, judging according to

preliminary experimental data, j=const, with an increase in the

current of injection increases the transverse phase volume of beam.

This leads to a reduction in the maximum permissible peak current.
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1

Fig. 3.18.
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Let us substitute the value of the transverse phase volume
Vn = _

into formula (3.129). We will obtain the following dependence of a

maximally possible peak current on the phase current density in the

injected beam

8KC I .3.134)

where
Sh j 2y(j 3. 135

Let us examine as an example the short-wave accelerator of

protons with following parameters [14]:
AO=1,05; v'0=0,50; S=20;.

O = 0,04; a = 0,9 c,; ; = 200c.tf.

According to expression (3.132), the limiting value of peak current,

which can be achieved/reached in this accelerator when v', I, is
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equal to I, = 1.67 a. However, to the value/significance indicated in

the experimentally measured parameters of proton beams it is

impossible thus far to approach. From formula (3.135) we have h=0.19.

Hence I = 0.31 /nl A maximally possible peak current of cluster

proves to be equal to 5~a2 = 5'0 mA. The average/mean current of the

accelerated beam in accordance with relationship/ratio (4.58) when

Cos, (, (-J. is Ic, z:o mA. The given estimations can prove to be

somewhat optimistic, since they assume that the beam is sufficiently

well matched with the channel.

Returning to the question about the optimum identification of

the parameters of the strong-focusing system of linear accelerator,

it is possible to make following conclusions.

1. Calculation of channel for stability is conducted without

taking into account space charge of beam. For this calculation it is

possible to utilize diagrams of Smith-Glyukstern or diagram on plane

vs. ¢ N. In special cases can prove to be more convenient and other

diagrams.

2. Should be designed channel for maximally large capacity. For

this it is necessary to obtain the largest possible

value/significance of the minimum frequency of transverse vibrations

A. of synchronous particle and the widest possible aperture. For

.
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obtaining maximally possible value , it is necessary to select the

optimum value of cosu. of synchronous particle, ensuring greatest

value/significance v' with the sufficiently low values of the

gradient of focusing field, and the smallest possible value of ratio

S/pW with that fixed/recorded v'.

Page 253.

The expansion of the aperture of the focusing channel, diverted

under the free oscillations, is achieved:

1) by an increase in the wavelength of accelerating field, if

aperture is limited by the value of magnetic induction in the poles:

2) by transition to the pulse supply of magnetic lenses (in the

pulsed accelerators) if constraint of aperture is associated with the

dissipation of power in the lenses;

3) with a reduction in the nonlinearity of focusing fields due

to an improvement in the form of poles;

4) by the careful adjustment of the focusing lenses.

3. Calculation of structural/design and electrical allowances
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for focusing channel should be conducted taking into account space

charge of beam.

4. Matched initial conditions for envelope of particles and

parameters of matching network also must be determined taking into

account space charge of beam.

5. Ionic sources and optic/optics of injector must be selected

of condition of obtaining highest possible phase current density. In

the optimum case the transverse phase volume of beam must be

approximately/exemplarily three times less than the capacity of the

focusing channel of accelerator.

The majorities of working and planned proton linear

strong-focusings accelrator serve as the injectors of proton

synchrotrons. Therefore it is of interest at least under the simplest

assumptions to rate/estimate maximally necessary current of injection

in the proton synchrotron. Let us examine the strong-focusing proton

synchrotron for which it is possible to utilize some

relationships/ratios, meridional above.
11

In the circular accelerators any disturbances/perturbations of

those focusing, fields periodically are repeated with the frequency,

equal to the fundamental frequency of the rotation of particles. Let
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Q - number of transverse vibrations, which fall for one revolution.

With Q=l the frequency of transverse vibrations coincides with the

frequency of disturbances/perturbations and is excited the first

external resonance, which virtually leads to the loss of beam.

Remaining external resonances appear on the harmonics of fundamental

frequency with

Q=n where n - the integers. With whole and half integ:al Q are

excited parametric resonances. The first parametric resonance begins,

when the frequency of the disturbances/perturbations doubly higher

than frequency of transverse vibrations (Q=1/2). Remaining parametric

resonances are excited with Q=n, n+1/2; n>l. Value Q is selected

between two forbidden values [119, 120]:

Q n = 1;4.

Page 255.

By selection Q is determined phase change of transverse vibrations in

one period of the focusing structure

inaQ
M

where M - number of periods of the focusing structure at the orbit

circumference. With the essential space charge of beam the

frequencies of the incoherent of particles and oscillations of beam

as whole diverge. The transverse sizes/dimensions of beam in the

annular chamber of the synchrotron is considerably smaller than the

transverse sizes/dimensions of chamber/camera; therefore phase change
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of coherent oscillations it remains close to g,. For the incoherent

oscillations phase change will be mixed to the value, determined in

the smooth approximation/approach by relationship/ratio (3.39). As a

result of the smallness of the permissible frequency switch of

incoherent oscillations the Coulomb parameter of beam is also low.

With h<<l for the incoherent oscillations we have

= n (0 -h).

Since each of the frequencies must not coincide with any resonance

value/significance, this sets limitation on difference in both the

frequencies

Q < I
4'

or

AU 7

Let us lead entire permissible frequency range for the displacement,

connected with the space charge. Then the maximum value/significance

of the Coulomb parameter is equal

But, on the other hand, from expression" (3.36) it follows

I1aI c = + V~..e

In the circular accelerator, according to expression (2.106),

O= cL

where L-MS - length of equilibrium orbit. Hence

Let us note that a maximally possible current of the particles
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injected into the circular accelerator is directly proportional to

the transverse phase volume of beam, while in the linear accelerator

maximum current decreases with an increase in the phase volume. This

difference is connected with the different nature of the superimposed

limitations: in the circular accelerators the limitation is

superimposed on the frequency switch of transverse vibrations, and in

the linear accelerators - to the transverse sizes/dimensions of beam.
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If the phase volume of the injected beam is lower than the

capacity of annular chamber, then it is possible to increase beam

current, utilizing multiple injection [121]. In the principle of

increasing the current of the accelerated beam it is possible until

the transverse phase volume of beam proves to be equal to the

capacity of chamber/camera according to each degree of freedom. In

this case attains the limiting value of the peak current

Ipe V'1 o. (3.136)

Expression (3.136) is inconvenient for the estimations, since in the

circular accelerators of transmission ability depends on energy of

particles. If we want to compare the limiting values of current with

different energies of injection, then into formula (3.136) one should

introduce the value of the acceptance of annular chamber, since in

the cyclic accelerators the acceptance on energy of particles does

not depend. Utilizing relationship/ratio (2.127), we will obtain

IO'-ap J Al0. (3.137)

With the aid of formula (3.137) it is possible to rate/estimate the

current which must be had at the output of the injector of the

strong-focusing proton synchrotron. Between the linear
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accelerator-injector and the circular accelerator is

established/installed high-frequency device/equipment debuncher),

that works in the frequency of accelerating field of injector. Action

of debuncher conversely to the action of buncher. V, buncher decreases

the scatter of particles on the longitudinal impulses/momenta/pulses

and smooths modulation of current density along the longitudinal axis

of bundle. After debuncher the current of injection is close to

constant, equal average current in the linear accelerator. The

average/mean current of linear accelerator proves to be then peak

current in the circular accelerator (if in the latter is not

conducted preliminary bunching of beam in annular chamber). Therefore

formula (3.137) gives estimation for the average/mean current of

injector. It is necessary to consider that the part of the current of

injection (to 50o/o) can be lost because the scatter of particles on

the longitudinal impulses/momenta/pulses after debuncher exceeds the

boundaries, adjusted by capture region. In connection with this the

average/mean current of linear accelerator must be

approximately/exemplarily two times of more than the value,

determined by relationship/ratio (3.137),

Icp. M = o1-A1,. (3.138)

Let us determine on the basis of formula (3.137) a maximally

possible number of particles, accelerated in one cycle of

acceleration by the strong-focusing proton synchrotron, N,..
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The average/mean current of particles in the annular chamber

= P = j ,

where N - number of particles in the chamber/camera. As it will be

shown below [see expression (4.58)], with the complete filling of

phase stability region average/mean beam current is connected with

the peak current of cluster with the equality

Synchronous phase is counted off from the moment/torque when field

reaches maximum. From the latter/last two relationships/ratios it

follows

After substituting the limiting value of peak current (3.137), and

taking into account expression (3.22), we will obtain
N A Kc IJI.1 P2, '

2r, (3.139)

Value
es

rp 4te 0m~c2

this is a "classical radius" of the proton: r,= 1.54 1(-,16,

Energy of injection in strong-focusing proton synchrotron to the

exit energy 60-70 GeV (122] is equal to W,-100 MeV; orbit

circumference L-1.48 kn; synchronous phase :q, = 60; the acceptance of

accelerator A-2.5 cm.mrad, which corresponds to the amplitude of free
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oscillations a=3 cm (sizes/dimensions of chamber/camera 20x12 cm).

Substituting the appropriate values into formula (3.138), we obtain

S ~1,0 mA. It is assumed that half of this current will be seized

into acceleration mode. Maximum peak current of clusters in annular

chamber 1 / _- 90 mA. A maximum number of protons in one cycle of

acceleration is equal, according to (3.139), A .

Linear accelerator-injectors for the strong-focusing proton

synchrotrons have, as a rule, wavelength of accelerating field

X=1.5-2 m. The comparison of the current of injection, which ensures

complete filling of annular chamber, with the maximum value of

average/mean beam current in the short-wave linear accelerator,

obtained above, shows that a maximally possible current of linear

accelerator is found at best on the limit of necessary. Thus, at

present precisely injection limits a maximum number of particles in

the cycle of proton synchrotron.

S 3.8. Space-charge effect on the beam focusing in the longitudinal

magnetic field.

Let us examine beam focusing with the high phase current density

in the longitudinal magnetic field. For the beams with zero phase

volume a similar task repeatedly was set forth in the literature [63,

64, 85, 123-125]. Let us examine below beams whose phase volume in
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the general case is different from zero.

Page 258.

For reasons, given in S 3.1, we will consider beam in the linear

accelerator continuous. The current of steady beam corresponds to the

peak current of clusters. Further, let us suppose that the proper

field of beam is formed only by the accelerated particles. The

calculation procedure remains the same, as in the case of the

strong-focusing fields; however, calculation is simplified, since for

the equations of motion of particles in the stationary longitudinal

magnetic field it is easy to indicate the first integrals, without

resorting to any supplementary assumptions. In particular, in

longitudinal magnetic field one of constants of motion - Hamiltonian

of particle.

The components of the proper field of beam are obtained above

and' are determined by expressions (2.45). Let us substitute the

components of proper field in vector equation (2.5). Instead of

equations (2.295) we will obtain the equations of motion, which

consider the space charge of the beam

dtr dy Q2 e* ,=20)L I ; o" .-
Y -- -2 IFa 2 (3.140)

4 
2  

XL " Y e .Xau
2-L L ' - m0

-% dy

In equations (3.140) function U(x, y, z) - the potential of proper



DOC - 82105213 PAGE

field. Frequencies , and Uk are determined respectively by

equalities (2.294), (2.293). Let into the focusing channel enter the

beam of round cross section. In view of the axial symmetry of all

applied fields the beam and subsequently will remain axisymmetric. in

this case it is assumed that also the four-dimensional phase volume

of beam possesses axial symmetry. The potential of proper field

depends in the transverse plane only on a radius - vector r. After

passing in equations (3.140) to the polar coordinates, in exchange

for (2.296) we will obtain

- a : (~ d e_ 0,-'T ~ ~ w~ = Q.T ." r- ;W, - -;
2 J dt r 14d or (3.141)

r -1' - -2,t,-'r- 
-  -' t

Into second equation (3.141) the potential of the proper field of

beam does not enter. Consequently, constant of motion (2.297) is

retained, so that as before the angular rate of rotation of particles

relative to the axis of accelerator is determined by the equality

a-. = - U. + ' if (3.142)

The substitution of angular velocity (3.142) into first equation

(3.141) gives
dr M2 e dU-r w,.r-- -- m 3  = 0. (3.143)

Page 259.

Parameter w, is assigned by expression (2.301)

(1
°
0= yf'.-J - I .,

and it is the frequency of a radius - the vector of the particle,
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which did not have initial rotation, in the beam of zero intensity.

Let us examine the matched beams, which retain a constant radius of

section along the axis of channel. Then the potential of the proper

field of beam - function only from a radius - vector r. After

multiplying equation (3.143) on dr/dt and after integrating, we will

obtain integral of motion, analogous (2.306):

ar~ -' %1!1 )
-= -" -r --I_ u,"'- r= 2 - L r,. ]-

The sum of first two terms in the right side of expression (3.144)

is, as shown in S 2.9, the square of the disordered component of

complete linear velocity in the plane, perpendicular to the axis of

the bundle:

A12VL_ = r - - -•

Therefore -2onstant of motion (3.144) can be. represented in the form
l(,u ) u:, - 2°r2 __ 2, U (r). (3.14 5)

rn~y3

Let us restrict the circle of the stationary distributions in

question by the case

n(r, v)=f(I). (3.146)

Let us note that constant of motion l(r, t") - the linear combination

of two independent integrals

I=2(H-WL ), (3.147)

where H - Hamiltonian of particle, and M - generalized moment of

momentum (2.297). Actually/really, equation (3.140) it is possible to

lead to the canonical form, if we introduce the generalized momenta,

canonical-conjugated/combined with the Cartesian coordinates
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PX~~WL:Pu=Y-WLX.

Hamiltonian, as it is possible directly to be convinced, takes the

form

- I/ ~- LH 7 1 [(P -- ,L{ i 1. - (P :, -- L -  ] -- - -X '  ': " "

and constant of motion (2.297)

M = xPq - yP,

regarding is the generalized moment of momentum [21)

M=jr, P1.

Page 260.

It is easy to show that linear combination (3.147) gives expression

(3.144). Thus, in the case (3.146) phase density is actually the

function of two independent constants of motion H and M.

Further, let us suppose that the stationary distribution of

phase density corresponds to the microcanonical

,(r. v-)=no611(r, V)-1 0 1.

Density distribution of space charge accordinq to the beam section
Ir

O(r) =f2.teno 6 11l(r, vi)-iolv, dv'±. (3.148)

This distribution must satisfy the integral condition

R,

I = 2xv. \ (r) r dr = const. (3.149)

Let us substitute into integral (3.148) function (3.145) and will
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produce integration by the replacement of variable/alternating

analogously with S 3.2. Taking into account (3.149) we will obtain

rl= p: =nst.

Function U(r) - the internal potential of the evenly charged/loaded

circular cylinder
I L

Under boundary conditions U(0)=dU/dr(0)-0 we have
U(r)= 4__ _ "

Constant of motion (3.144) can be now represented in the form

dr' A42w1 ' o

Here

W , - ,0P a(3.150)

where I, - standard strength of current (3.22). According to the

condition, all particles in the beam have one and the same

value/significance of constant of motion I=I.. The peripheries of

beam r=R, reach the particles, which did not possess initial

rotation relative to the axis of accelerator. Phase trajectory of

these particles on plane r,

r 2 r2= Rc'. (3.151)

Page 261.

Trajectory (3.151) covers the representative points of all particles

with M0 (see Fig. 2.26). According to expression (3.151), o,, - the

frequency of a radius - the vector of the particle for which M-0, in

M ,, 
A_
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the beam with the nonzero intensity. As shown in S 2.9, ellipse

(3.151) coincides with the projection of four-dimensional phase

volume on plane x, x. The transverse phase volume of beam, regarding

(2.2), is equal to projected area on plane ' Thus, for the

matched beam with a radius of R we have

A radius of matched beam with the same phase v)lume and zero

intensity is determined by the equality

Hence

R,. RO , :

If we introduce into equality (3.152) of expression for w from

formula (3.150) and to solve equation relative to R;.then we will

obtain

Me-c~l M"

or

R -MeVh412 313

The dimensionless combination of values
C /

is the Coulomb parameter of beam in the longitudinal magnetic field.

According to expressions (3.152), (3.153),

(3.154)

Expressions for a radius of matched beam and frequency of a

radius - the vector of particle formally coincide with the analogous
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relationships/ratios, obtained above in the smooth

approximation/approach for the beam in the strong-focusing channel.

The degenerate and canonical distributions also lead to with respect

to the coinciding formulas. Hence it follows that ratios R, R, and

-.-,: in the longitudinal magnetic field also noncritically depend on

the form of the stationary distribution of phase density.

The maximum permissible phase volume of beam with the nonzero

intensity is connected with the channel capacity (2.316) with the

equality, which directly escape/ensues from relationship/ratio

(3.154)

V.h=V(II-h'-h).

Page 262.

Maximally possible peak beam current in the channel with the

longitudinal magnetic field

where n )
/n~-~- ~/c ' OV.

After substituting expression (2.316), we will obtain

-z- ( Io.(3.155)

If we for the comparison rewrite formula for the limiting current in

strong-focusing channel (3.132) in the form
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then it is possible to see that both expressions are close, only in

formula (3.156) instead of frequency w" stands square root from the

product of the medium frequency of transverse vibrations for the

minimum instantaneous frequency. Let us compare formulas (3.155) and

(3.156) at the identical values of a/X and AT'. Let us accept,

according to expression (2.320),

where Q - initial frequency of small longitudinal vibrations. For the

linear proton accelerator 1-100 [14]

i= 1.05: v('=0.50; S=2p .; )2=8.73. 10- -.
W 0

Hence

3 .3.10-3.=44.C~

Thus, in the longitudinai iagnetic field the limiting current of beam

proves to be approximately/exemplarily to 30o/o higher than in the

strong-focusing channel. This is connected with the low

value/significance of minimum instantaneous frequency in the channel

of quadrupole lenses, i.e., with the presence relative to deep

modulation of envelope, which makes it necessary to decrease the mean

radius of beam in comparison with the assigned aperture. Thus, in the

example

S 8.3.10- 2: = 4.. I0--.

in question. In the channel with the longitudinal magnetic field

we
--- =. 6.6*10-'.

The mean radius of beam in the strong-focusing channel is lower than
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the radius of beam in the channel with the longitudinal magnetic

field, but maximum size proves to be more.
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Page 263.

Chapter 4.

Longitudinal vibrations of particles in beams with the high density

of space charge.

4.1. Potential distribution of self-congruent field along the

longitudinal axis of cluster.

During the analysis of transverse vibrations of particles in the

beams with the high density of space charge we disregarded/neglected

the dependence of the transverse components of the proper field of

beam on the longitudinal coordinate. This made it possible to avoid

the difficulties, connected with the examination of complete task in

the six-dimensional phase space, and to bring together the latter to

the determination of the self-consistent solutions for the proper

field of beam and particle trajectories taking into account the

distribution of phase density in the four-dimensional space of

transverse coordinates and impulses/momenta/pulses. However, it is

important to examine the longitudinal vibrations of particles in the

intense beams, since previously it cannot be indicated, what effect

more greatly limits the limiting current of beam - transverse or
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longitudinal Coulomb pushing apart. As it will be shown,

response/answer to this question depends on the identification of the

parameters of accelerator.

The longitudinal forces of electrostatic pushing apart

susceptibly/critically depend on the length of clusters and,

therefore, they must be sensitive to the law of density distribution

of space charge along the longitudinal axis of cluster. The correct

formulation of the problem requires the determination of the

self-consistent potential distribution within the cluster. To avoid

the formulation of the problem is fully possible only in such a case,

when we disregard/neglect the dependence of the longitudinal

component of the proper field of beam on the transverse coordinates.

In S 3.1 based on the example of the general ellipsoid it was

shown that the longitudinal component of the proper field of space

charge very weakly depends on the relation of the transverse

semi-axes (see Fig. 3.1). The longitudinal component of field has the

greatest value/significance with the circular cross section of

cluster.

Page 264.

Further as in Chapter 1, let us suppose that the amplitude of the
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longitudinal component of accelerating field does not depend on

transverse coordinates and is only the function of the longitudinal

coordinate

E = E(.

Since the longitudinal component of proper field, by hypothesis, on

transverse coordinates does not depend, density distribution of

charge along the longitudinal axis must depend only on the

longitudinal coordinate

Q=Q(z).

Thus, in each cross section of beam the density of space charge is

constant, which is in accordance with the assumption about the

stationary microcanonical distribution of phase density in the

four-dimensional phase space of transverse coordinates and

impulses/momenta/pulses. The assumptions indicated in principle

simplify the task about the phase stability and they make it possible

to bring together it to the two-dimensional on the phase plane of

longitudinal coordinates and impulses/momenta/pulses.

Let us introduce also the following assumptions, which no longer

carry fundamental character, but the simplifying calculations:

1. The effect of the metallic walls of channel on the proper

field of beam is negligibly small.
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2. Bunches of particles are well formed, and all particles, not

seized into acceleration mode, fell out from beam. Let us note that

the task about the particles out of the separatrix is substantially

nonlinear. The deletion of such particles leads to the overestimation

of the effect of longitudinal pushing apart.

3. Particles are accelerated in field of traveling wave. For the

discrete/digital accelerating structures such field is the equivalent

traveling wave.

L.=+ q, - synchronous phase in the absence of longitudinal Coulomb

pushing apart; z. - longitudinal coordinate of synchronous particle

in the assigned applied fields in the beam of zero intensity. In

other words, z, - moving coordinate of point at the front of the

traveling wave in which would be located synchronous particle, if the

forces of Coulomb pushing apart were absent. Let us introduce the

moving coordinate system, rigidly connected with the front of the

traveling wave. Longitudinal coordinate in this system we will count

off from point z,

; z-ze.

Page 261.

Equation of motion for the arbitrary particle in the cluster takes

the form
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dW
d- = eE cosT+eE(C), (4.1)

where / z

VS-

there is a phase of the traveling wave in which is located the

particle; E - amplitude of the traveling wave; E, - longitudinal

component of the proper field of cluster. The current velocity of

synchronous particle regarding is equal at each moment of the time of

the velocity of the motion of the front of the traveling wave.

Therefore an increase in energy of synchronous particle per unit of

length does not depend on the forces of the Coulomb pushing apart:

- -- =eEcosq(1 (4.2Le+ jz

,,- new value/significance of synchronous phase, shifted relatively
A

1, due to the action of Coulomb forces; - distance from the

synchronous particle to the instantaneous value of coordinate :, Then

eE cos q, = eE cos q, - efE (,).

Let us introduce into the examination

canonical-conjugated/combined variable/alternating, used in Chapter

I: phase of particle it (1.47), calculated off the synchronous phase

in the field without the space charge, and energy difference of

synchronous and nonsynchronous particles (1.48)

= -w;
p4, = W.- W.

After deducting equation (4.1) from equation (4.2), we obtain

dp eEcos% -cos(- - (4.3)
dz-



DOC = 82105213 PAGE

Second equation, which describes longitudinal vibrations, (1.51) -

purely kinematic. The form of this equation upon consideration of the

forces of Coulomb pushing apart is not changed. Let us pass in

equation (4.3) to independent by the variable/alternating t. As a

result we will obtain the following system di first-order equations

ap,= 
P ;

-=ev, Elcosf,r,-cos,, '-,I,)I-eL,,E,(
at

Equations (4.4) are written in the laboratory coordinate system.

Therefore, according to expression (2.45),

E, (_ = - 3- Z (-: . ,. .,

where U - potential of the proper field of cluster in the laboratory

system. Since we disregarded/neglected the dependence of the

longitudinal component of the proper field of cluster on the

transverse coordinates, we can replace partial derivative in equal:.y

(4.5) of the total derivative

E,()= y2

Page 266.

Differentials from the phase of particle and from the longitudinal

coordinate are connected with the relationship/ratio

-* -w'- d

Hence

Equations (4.4) can be now represented in canonical form
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dt ~ew dL'

The Hamiltonian of particle takes the form

H ( ,, pr. ) = 2yov , -e:E [si

At Cos q - -_ " . (4.7)
Vf

Expression (4.7) is the generalization of Hamiltonian (1.53) to the

case when it is not possible to disregard the effect of the proper

field of beam to the longitudinal vibrations of particles.

Let us further examine only conservative approximation/approach,

by proposing as in Chapter 1 that Hamiltonian (4.7) - constant of

motion. For simplification in further recordings it is convenient to

introduce instead of electric potential L ,ip the new potential

function

D (t = cosq,--sin(v'-%) e ,(
sin %, 0* Y 4C .

Taking into account equality (1.70) Hamiltonian (4.7) can be then

converted as follows

H, (*, p,)= ,' * 0P8L' LS )'

Equation of phase trajectory on plane w, p,. corresponding to the given

value of H-const,

H,- value of Hamiltonian, which corresponds to separatrix. With the

designation
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wyH,.

:. .. =(4.8)

the equation of separatrix takes the form

P,, (Vc) = I 2y p v D D,) (4.9)

Page 267.

In the equation of separatrix (4.9) are unknown function lw[ and

number W(). which are subject to determination with the assigned peak

current of cluster. If p(1V) and WD will be determined, then by this

very we will completely calculate phase stability region. The

coordinate of a singular point of the type of center on the phase

plane corresponds to the minimum of potential function [23, 24]

('1') ; - (VO) > U. (4. 10)

Phase of synchronous particle in the intense beam

(F: = (f - 4'

A singular point of the type of saddle corresponds to the maximum -f

the potential function

d-- - (4 0 ) --- 0 ; -40 - (V C ) < 0 . (4 . 1 1 )

Potential function and separatrix is schematically shown in Fig. 4.1.

In contrast to Fig. 1.5 singular point of the type of center by Fig.

4.1 is displaced relative to the origin of coordinates. The

boundaries of the region of p)-ase stability 'I>, ', (see Fig. 4.1)

satisfy condition p,,=0. whence it follows

O(D Ic) = d ; 4) (V.) =O r . 0 .12)
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By equations (4.12) is determined parameter tv, and the left boundary

of the region of phase stability V

In particular, if Coulomb forces are absent, then equations

(4.10), (4.11), (4.12) lead to the results, obtained in S 1.2. In the

beam of zero-intensity (i)f-lO and (D'-I,(,. where

V os{~ - V. sinC s, -If fq 5)
sin 4,

Hence

*0 0 ip 2(joe=(Do(-2p) = 1-2q- ctg :.-

In this case the equation of separatrix (4.9) coincides with equation

(1.57).

Lue+ r1(WPv) - function of the distribution of phase density on plane

V, Pv.
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I I

Fig. 4.1.

Page 268.

During any stationary distribution

n (*, p*) =f (H)

the clusters do not fluctuate, since the lines of equal density

coincide with the phase trajectories. According to the condition, out

of the separatrix the representative points are absent. Following

work [126], let us accept simple assumption relative to the law of

the distribution of the representative points within the separatrix,

namely let us assume that within the separatrix the phase density is

constant. For the phase trajectories, arranged/located within the

separatrix, H<tif; for the trajectories, which pass out of the
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separatrix, H>H. Hence

n -,o A H H< He; (4.14)

n=O $iH - H,.

Key: (1). with.

Function (4.14) describes the two-dimensional distribution of phase

density, analogous to singular distribution (3.41) in the

four-dimensional space.

Let us compose difference H(VpW)-He. According to expressions

(4.8), (4.9),
(V,~ ~ ci po aejop VI/-/ ,.p, -- 2y= ' p % --p V ,)I (4.15)

The density of space charge changes along the longitudinal axis of

cluster according to the law

()=e n " (V, po) dpv.

Integrand exists n-n, when p4<p4 and n-0 when P'J0>p,1C. Thus,

Q (*)Ul e dp,-2enopoe(V). (4.16)

The law of density distribution of charge along the longitudinal axis

of cluster repeats the course of separatrix. If I - peak beam current

and Re - the mean radius of cluster, then
IQeseu - v,Rs (4.17)

After assuming in expression (4.16) 'V-' and after equating to its

expression (4.17), we will obtain
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I

no = p i • (4.18)-tvgRcp~c (Vo)

Taking into account formulas (4.9), (4.18) equality (4.16) is reduced

to the form

I (D (V)
L()- avR 2 -WW . (4.19)

Page 269.

By formula (4.19) the density of space charge Q(1ni is expressed

as the potential of the proper field of beam. This, in the principle,

it makes it possible to compose equation for the potential of

self-congruent field. For the calculations it is more convenient

instead of differential Poisson's equation to use the

general/common/total integral form of the solution

U 1 QIV (4.201

where V - volume, occupied with space charge; R - radius-vector in

the three-dimensional space. Substituting in equality (4.20) for the

potential of proper field its expression through function 1)(W) and

instead of p - expression (4.19), we will obtain integral equation

for function @(). Since the amplitude of accelerating field does not

deoend on transverse coordinates, in the absence of space charge to

all particles independent of their misalignment corresponds one and

the same separatrix. All particles of cluster are arranged/located

within the circular cylinder, limited by flat/plane ends/faces. The

length of cylinder is determined by phase stability region overall
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for all particles. As it will be shown, capture region on the phases

in the presence of Coulomb pushing apart is reduced. The longitudinal

component of the field of the space charge, limited by the cylinder

of the finite length 1, is maximum on the axis and somewhat weakens

to the periphery of cylinder (Fig. 4.2). Therefore phase stability

region must be reduced for the axial particles more than for the

peripheral ones. However, since we disregarded/neglected the

dependence of the longitudinal component of the proper field of

cluster on the transverse coordinates, one should consider that and

in the presence of space charge the cluster is limited by circular

flat-topped cylinder.

Subsequently let us examine the particles, which lie on the axis

of bundle. Let us calculate potential on the axis of a cylindrical

cluster, radius R. in the coordinate system, relative to which the

cluster rests (Ts-system).
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ZR:R

Fig. 4.2.

Page 270.

Upon transfer from the laboratory coordinate system, rigidly

connected with the accelerator, to &-system longitudinal

sizes/dimensions grow/rise 7 once, so that in the same sense

increases each element of volume and falls the density of the space

charge

Q (;.I)= Q(G). (4.21)

La+
, ;,-coordinate of beginning and end/lead of the cluster in the

A
laboratory coordinate system. Coordinates of beginning and end/lead

of the cluster in-7- -system

Further, r, , - coordinate of the current point of integration in

the cylindrical coordinate system, which accompanies cluster (Fig.

4.3). Distance from the current point of integration to the point on

the axis with longitudinal coordinate ;a is equal
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R.= ( -

Potential on the axis at point Za is determined by the integral

if r

In each elementary disk (see Fig. 4.3) the density of space charge is

distributed evenly. Therefore internal integrals can be elementarily

calculated

UR, (.) = ,,-- --. V dd .

In the laboratory coordinate system we have

U (..) = , 3U (;,).
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Fig. 4.3.
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By the replacement of the variable/alternatinc of the integration
-- I

L1

taking into account (4.21) we will obtain

In the laboratory system the difference longitudinal coordinate of

par-ticle and the phase of particle V~ are connected with the

relationship/ratio

Introducing the new replacement of the variable/alternating of the

integration

we will finally have
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U( f"= W - I.) (IL):X

X wR. 2 t (wT ~ 1i .22,

Let us pass on the left side of equality (4.22) of the potential of

the proper field of cluster to introduced above dimensionless

potential function &(Di)

L' ( ) = ._',:, ( ',, -

and let us replace Q(*) with its expression (4.19). As a result we

will obtain integral equation for the potential function, which

corresponds to self-congruent field,

V.( ) = (o (V)- h, R vr z (1 , (.-@ u) d,. -1 ;23)

Function o(V) is assigned; it corresponds to the beam of zero

intensity and is determined by expression (4.13). Kernel of integral

equation

/1 (V' Y 2 w)S-
Page 272.

Constant parameter ht is introduced as follows

- I -- ((4.25)

the characteristic strength of current 1, depending only on the

parameters of the accelerator

= ' ( )'(4.26)
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At the solution of integral equation (4.23) parameter hT is

conveniently been assigned. For each value/significance h, from

equation (4.23) and supplementary conditions (4.11), (4.12) are

determined function Wl(i,) and values Vc,vi,+c, also depending on h,.

After this it is possible to find the ratio of the peak current of

cluster I to the characteristic value of current Iv, corresponding to

given h,. The method of the numerical solution of integral equation

(4.23) with boundary conditions (4.11), (4.12) is described in work

(127].

As it will be shown, parameter h, is approximately proportional

to phase current density on plane V.P,. i.e., it is proportional to

the ratio of complete peak beam current to the area, included by

separatrix. Therefore by analogy with the Coulomb parameter of beam,

introduced in Chapter 3, value hv can be named the longitudinal

Coulomb parameter of beam.

S 4.2. Stability of the longitudinal vibrations of particles in the

intense beams.

Let us first of all examine small longitudinal vibrations in the

intense beams. Let us introduce potential function O(T) into the

equations of motion (4.6), we will obtain
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dppV (PV t2e ' 2 d$D
dt dip ,

Hence it is possible to obtain second order equation for the phase of

particle '. In the conservative approximation/approach we have

t- 0, (4.27)

where

there is relativistic frequency of small longitudinal vibrations in

the beam of zero intensity. Equation (4.27) is nonlinear. Assuming

that the phase of particle little differs from synchronous phase, let
d(D

us expand function . in series/row about point V=V, and we will be

restricted to the linear terms of the expansion
d@D d(D d2T

-TV M = - O') + d* (V0) (V - V'0) ..

Page 273.

According to expression (4.10), the constant of series/row is equal

to zero. The linearized equation takes the form

-t,1 d* _o0 = 0. (4.28)

From equation (4.28) it follow; that the oscillations of phase occur

around the new state of equilibrium '=qn with a frequency of the

small of

UN..= jQ / T ('iq). (4.29)

As it is easy to be convinced, when h,=O we have

aV2 (0) = 1,



I
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and Q.,= Q. The second derivative of potential function can be

determined by dual differentiation of equality (4.23). Kernel of

integral equation RWT. a) on diagonal v-=a has a derivative

discontinuity. Actually/really, from expression (4.24) follows

-w-= ' ,Re °- .. .. -"

OVV

thus,
f______--a(4

... 1 pn ,L-S I -/ --1 ripH , >l)'.

Key: (1). with.

Plotted function R(T.a) is given in Fig. 4.4.

From Fig. 4.4 it is evident that the kernel of integral equation

has pulse character. This is explained by the fact that the Coulomb

forces rapidly decrease with the distance, so that a basic effect on

the given particle have only the adjacent particles. With the
R

decrease of parameter -t- the peak of nucleus decreases on the

height/altitude and it becomes narrower. In the limit, when -f-c--0.

the nucleus vanishes evenly to relatively a.
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Fig. 4.4.
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During the differentiation of integral (4.23) with respect to the

parameter the derivatives must be calculated separately in sections

T.i and *V. The second derivative of the nucleus

.R Yv. ) L' c \ 2 -,, a 2 (4.30),V=<- ". L ,,,7,, , ( - ) .J

gaps does not have. Differentiating twice equality (4.23) and

substituting T=o, we obtain

T'0 (IP0) -* (VO1- 2h* V ¢c - (*0) (1 - M). (4.31)

Value M is determined by the integral

'C

2 'M ¢- (D (Vo0) 0 (* ° a) da. (4.32)

Expression (4.31) can be simplified, if to use the determination of

longitudinal Coulomb parameter (4.25)

a ( I) ( M).(,- (%)= () -7 Y J) (4.33J)

U*-I -d i
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by formulas (4.29), (4.33) is determined the dependence of the

frequency of small longitudinal vibrations on the peak current of

cluster.

For the numerical solution of integral equation (4.23) it is

necessary to previously assign two values: by synchronous phase in

the beam of zero intensity p.. of that being determining potential

function (D ,*), and by parameter R__, by that being determining kernel
YvaS

of integral equation. As it was established in S 3.7, the ratio of

the aperture of the strong-focusing accelerator to value AX during

the optimum identification of the parameters of the focusing system

virtually is uniquely determined by the assigned frequency of

accelerating field, by energy of injection and by maximum permissible

induction in the poles of magnetic quadrupole lenses. With X=2 m and

W,=0.7 MeV the maximum amplitude of free transverse vibrations can be

accepted equal to 0.9 cm. Assuming/setting the mean radius of beam by

equal toRe = 0.5ca,for the initial part of the accelerator we will

obtain 2. R= 0.4. Let us accept, further, cos , = 0.8. Are given below
¥Y

the basic results of the numerical solution of integral equation

(4.23) at these values of the parameters.

Fig. 4.5 gives the dependence of the frequency of small

longitudinal vibrations on Coulomb parameter h,. Frequency is

calculated according to formulas (4.31), (4.29) after the
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determination of potential function s vir for the series/row of values
h,. Frequency of small monotonically decreases with an increase in the

Coulomb parameter and within the limit it vanishes when h.

The behavior of potential function (D ) at different values

is shown in Fig. 4.6.

Page 275.

Level D, with increase hv increases, but this does not have vital

importance, since the course of separatrix does not depend on

absolute level function (V). In the absence of Coulomb pushing apart

the minimum of potential function, which corresponds to synchronous

phase, lies/rests in the beginning of the coordinates: , )With an

increase in the Coulomb parameter the minimum weakly is displaced to

the side of negative values . depth and width of potential well

decrease. In this case the decrease of potential well depth occurs

considerably more rapid than the decrease of its width, and in the

limit, when h,-.a,, the depth of pit vanishes, and width, as will be

evident below, it remains final. At the infinite value/significance

of Coulomb parameter ht potential function must have straight/direct

horizontal section and a singular point of the type of center on the

plane will disappear.
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With a change in the form of potential function is changed the

course of separatrix. For the characteristic of the behavior of

stability region at the high values of the Coulomb parameter it is

expedient to introduce any auxiliary parameter, which remains final

when h,--% From formula (4.29) it follows that the process of phase

stability is retained, until the values of the second derivative of

potential function at the point of the minimum lie/rest in the limits

I> IO) >0.
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Fig. 4.5.
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Fig. 4.6.
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Space-charge effect of beam on the process of phase stability is

convenient to characterize with value

k = I -a" (t),

of that of unambiguously connected with the Coulomb parameter. In the

absence of longitudinal pushing apart we have k=0, and the infinite
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value/significance of the Coulomb parameter corresponds then k=l. For

the frequency of small we will obtain the expression

The dependence of the auxiliary parameter k on the longitudinal

Coulomb parameter of beam hr is given in Fig. 4.7.

The function

2() 2 (D,-D(,P) (4.34)

does not depend on relation __ and, therefore, is determined

separatrix for any frequencies of small phase oscillations, which

occur when h,=0. On plane V P-P' the separatrix, according to
PS

expressions (1.50), (4.9), will take the form

9C(M)= Y*V-2 - (9 )

where gc - relative difference in impulses/momenta/pulses (1.58).

Fig. 4.8 gives plotted functions y (q) at the different values of

parameter k, while in Fig. 4.9 - the dependence of stability limits

'eH.,.wmc, of the abscissa of center V0, and also relation Q onj/Q on

k. These graphs/curves make it possible to trace how is deformed the

stability region of longitudinal vibrations with an increase in the

Coulomb parameter.
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With increase of k the stability region is reduced. Decrease occurs

in essence due to the decrease of the permissible variations of

particles on the impulses/momenta/pulses, moreover with k--l (h,-xi

the permissible variations on the impulses/momenta/pulses vanishes.

The width of stability region with respect to the phase is decreased

relatively slowly. Thus, with an increase in the auxiliary parameter

k from zero from 0.86 (which corresponds to an increase in the

Coulomb parameter from zero to h, = 15.2) the vertical spread/scope of

separatrix decreases five times, into the capture region on the

phases it is compressed approximately/exemplarily to 30o/o. From the

graphs/curves in Fig. 4.9 it follows that the stability region with

respect to the phases remains final with k=l.

Current in the cluster is distributed along the longitudinal
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axis according to the law

1 op) = nRc'w 00. 0.35)

Clusters follow each other with the period 2r. Average/mean beam

current is equal to

t i lq~d% 4.36)
\C I(it) dV.

After substituting into integral (4.36) of expression (4.35), (4.19),

we will obtain the following formula for the ratio of average/mean

beam current to the peak current of the cluster

/,p I I tD, - (D'op
. . .. d. -ip. (4 . j

/C 2- - r.O)
7 .<
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Fig. 4.8.
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For calculating interaction of beam with accelerating field it is

necessary to know the amplitudes of the fundamental harmonics of the

current of cluster in the form of Fourier series

(*I) =Ip + I cos V +/ Isin p -r.

Coefficients of the fundamental harmonics of the series/row

'e

=1 I I (VP) cos V dV;

'K
* I I(VJ) sin 4d't.

Utilizing expressions (4.35), (4.19), we will obtain the ratio of the

amplitude of the first cosinusoidal harmonic to the peak current

'C

S=- cos Vd*.

For the first sinusoidal harmonic of Fourier series we have

T, = I Vai -MO)T sinipd*.

- - m Jq ' p T



DOC - 82105214 PAGE

In view of the fact that the extent of cluster along the axis of

phases V,-%--,little is changed with an increase in the Coulomb

parameter, one should expect that the ratio of average/mean beam

current to the peak weakly depends on h,. The considerations indicated

occur also for the ratio of the amplitudes of the fundamental

harmonics to the peak beam current. Precise numerical calculations

confirm this fact. Fig. 4.10 gives the graphs/curves, which

characterize the dependence of ratios ' L and on the auxiliary
I'

parameter k. From Fig. 4.10 it is evident that the coefficients of

Fourier-expansion of beam current approximately linearly depend on

parameter k, moreover dependence itself is weak. Good

approximations/approaches in entire range of change k in parameters

ITy- placed into the calculation give the following

approximations:

IP = 0 215(1-0.25k),

-= 0,381 (1-0.19k); (4.38)

= 0, 070(1-0,92k).

I-I
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Fig. 4.9.
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Thus, the value of the integral

"0 I c- Vo) (4.39)

connected with the average/mean beam current with the equality

1 = I -, (4.40)

noncritically depends on k. With k--*l function * in appropriate

interval *.Vc evenly approaches unity, so that value k approaches

the limiting value of difference W-',:
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Let us txamine connection/communication of peak current with the

longitudinal Coulomb parameter of beam. Fig. 4.11 shows the

dependence of peak current and average/mean beam current on parameter

k. At the low values of parameter k it is as follows connected with

the peak current

k O , 18 (4.41)

With an increase k thiis dependence differs from linear law. When

k-(h.r--,) peak current approaches finite value. Actually/really,

according to expression (4.33),

, I--M (4.4 2

The numerator of the right side of this equality when h,-. remains

the value of final.
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On the other hand, from formula (4.32) it follows that when h,-~

2R

After substituting function (4.30) and after producing integration,

we will obtain

____ ___ ___ _ 'NWO(4.43)

F/(wRc )±(P-)'+ 1 Q)~

The limiting value M<l, so that the denominator of expression (4.42)

in the limit does not become zero. With kul we have
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Since P0remains close to zero (see Fig. 4.9), (D* Ip) and

In -, * (4.44)

Extrapolation of computed values of M to k=l gives following limiting

value W,=0,74. Hence it follows that maximum peak current in cluster

Let us define the longitudinal phase volume of beam V, as the

area, occupied with the representative points of particles on the

plane of canonical-conjugated/combined variable/alternating V', P,,0:

Vo dip dp,.

In the case in question entire/all region, included by separatrix, is

filled with particles. The area of this region, according to

expression (4.9), is equal to

V.=2 Vi'/"NI v D -*),d,.

Let us multiply and let us divide the right side of equality (4.25)

on V,. Taking into account formula (4.39) we will obtain the following

expression for the longitudinal Coulomb parameter of the beam:

, = , - t4.45)
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The ratio of complete peak beam current to its longitudinal phase

volume let us name/call phase current density on plane *- P 6,. Since

A little differs from constant value in entire range of change ht

from 0 to -, the Coulomb parameter of beam, introduced by equality

(4.25), is approximately proportional to phase current density.

Page 281.

Thus, the obtained dependence between the sizes/dimensions of capture

region and Coulomb parameter h (or auxiliary parameter k) reflects

the dependence of these sizes/dimensions on the phase current density

of the injected beam. Passage to the limit h,-- this is

transition to the infinitely high phase current density; in this case

the beam current, seized into acceleration mode, remains final, and

longitudinal phase volume vanishes.

Since the real beam, injected into the linear accelerator,

possesses nonzero phase volume, the maximum peak current of the

particles, seized into acceleration mode (4.44), can be in the

principle realized only with the infinite current of injection.

picture appears as follows. With an increase in the current of

injection the peak current of the seized particles monotonically
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increases. With the low currents of injection the peak current of the

seized particles increases approximately proportional to the injected

current. Subsequently an increase in the peak current of the seized

particles begins to lag behind an increase in the current of

injection and approaches the finite value with an infinite increase

in the injected current. In the extreme case into acceleration mode

are seized only the particles whose energy coincides with the energy

of synchronous particle. The average/mean current of the accelerated

beam also monotonically increases with an increase in the phase

current density of injection and within the limit it approaches the

finite quantity
JiraI/cp = " ,

2a (I -- )

At values T,, !-,Rc of those used in the numerical calculation,

limiting mean beam current, determined by longitudinal pushing apart,

it is possible to obtain from first equality (4.38); it is equal to
lp 0,61s.

In short-wave ionic strong-focusings accelrator the current of

the accelerated beam is limited not to longitudinal, but transverse

pushing apart. Let us examine proton accelerator with the standard

parameters: X-2m; A.=0.04; cos= 0,8; Wx = 2.7.10-3. For this accelerator

I, =650 ma, whence follows In, 2 ,5 a. the maximum value/significance

of the peak current, determined by transverse pushing apart, for the
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accelerator with the same parameters was obtained in S 3.7 and proved

to be equal to ix, 520 mA. With the decrease of peak current in

the cluster the longitudinal Coulomb parameter of beam rapidly falls.

If we assume I=600 mA, then from formula (4.41) follows k=0.16 (or

h 4 0.9) The capture region of particles into acceleration mode is

decreased in this case on the phase only by 5o/o, and on the relative

scatter of impulses/momenta/pulses on 14o/o; the frequency of small

longitudinal vibrations falls on 8o/o. One should recall that the

obtained numerical ratios relate to the idealized case when all

particles, not seized into acceleration mode, are considered fallen

of the beam. The account of such particles can substantially raise

the theoretical value/significance of the limiting current,

determined by longitudinal pushing apart.

Page 282.

S 4.3. Dependence of the limiting current, determined by longitudinal

pushing apart, on the parameters of accelerator.

The solutions of integral equation (4.23) depend on three
parameters: hp, q', -In S 4.2 are given the results of a precise

numerical solution of equation (4.23) for the case when the values of

two parameters T, and t are fixed/recorded. These solutions made
Vc'.

it possible to explain the general character of the strains of
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potential function and separatrix with an increase in the phase

current density of beam on plane V. p, However, all quantitative

results related only to the selected particular values of parameters

wR and it did not make it possible to explain how are changed

solutions during the variation of the values indicated. The

relationships/ratios, which describe space-charge effect on the

longitudinal vibrations of particles, prove to be simpler and easily

more forseeable, if one assumes that synchronous phase y, and the

phase of particle V they are small in the absolute value

In this case it is possible to lower a number of independent

parameters in equation (4.23) up to two, which substantially

simplifies task. The requirement of the smallness of values V and

;-. is not strong. The power series obtained with the expansion of

trigonometric functions rapidly converge, and already the second

approximation/approach proves to be sufficiently to precise ones.

Virtually it suffices to require satisfaction of conditions

q.I<L j:'!<L

Having expanded function (4.13) in the power series of V and

9- and after being restricted by the members of the third degree, we

will obtain

4D (V) =- *' +

SII6
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Let us introduce the new variable/alternating

,¢--T Y -!q , ,

Then
(D, = D.0 (x) - ,(4.46)

where

)(Do X) = X2-- x3 (4.47)

Coordinates of center, saddle and second boundary of the region of

phase stability in the new variable/alternating

X o =  * 0 : X C V - - - " x X = -I N

Page 283.

By analogy with expression (4.46) let us introduce into the

examination new potential function J)(x), connected with function

(DjV) with the equality

(D (V) = f204 (x)- 1. (4.48)

Let us accept, furthermore, the following designations:



r
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D, ( x e ) ( 4 .-1 9

.- dx. (4.)

After passing in integral (4.39) to the new variable/alternating, we

will obtain

Yard integral equation (4.24) in the new variable/alternating it is

reduced to the form

R(V~a)= ~rI2~(-/2 q. (.r (;51

Here

I R,
F= Y (, 4-52)

2.-T

Parameter r makes simple geometric sense. This parameter is

proportional to the ratio of a transverse radius of cluster to the

longitudinal length of cluster in the beam of zero intensity. It is

obvious that with the decrease of value r the forces of longitudinal

Coulomb pushing apart must decrease, since cluster in this case is

extracted lengthwise.

Let us pass in integral equation (4.23) to the new
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variable/alternating of integration y. Taking into account formulas

(1.62), (4.46), (4.48)-( 4.51) let us arrive at the equation for

potential function 'I*

X

D (x) = l} (x) -- h; R (x. y) l '-' U,}dy. (4.

Kernel of equation (4.53) has the form

.(xy r= 2 (r- (X- y - I ",X-,TiP-i (.4

Coulomb parameter of equation (4.53)

h; = r2 ,T, -h, ( ,'3

or

hv= 41 iA* (4.56)
101 IvWx tgfS

Page 284;

In the approximation/approach accepted the equation of separatrix is

converted as follows

.F (x) = p. V2 1[. - $ (x0*.

For the beam of zero intensity x,= 2 ; 0,=2/3. Hence

Fntio (2-7x) i n Fi1g . (457)

Function (4.57) is given in Fig. 4.12. In the same figure for the



DOC = 82105214 PAGE rJ

comparison dotted line showed the same function, calculated according

to strict formula (1.59a)

Fo -~ [2 U -

Both functions are calculated when P,=-0,65 From Fig. 4.12 it is

evident that approximation (4.47) transfers well the behavior of

potential function.

The giving rise to function of integral equation (4.53) does not

depend on synchronous phase. Hence it follows that the solutions of

integral equation (4.53) at the given values of parameters P, hi

remain valid during any selection of synchronous phase. This

considerably facilitates the numerical integration of equation and

simplifies the analysis of solutions. It is obvious that also value

A* on the selection of synchronous phase does not depend. Therefore

the formula, which connects peak tone with the average/mean beam

current,

= .A* (4.40a)

in the approximation/approach accepted is accurate at any values Wo

For the beam of the zero intensity

2

2 (2-x) Vx -- Idx,

whence . 5 --5.
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Fig. 4.12.
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Thus, for the beam of the noninteracting particles

lop = 1,04 ( r _I 4.i8)

Analogous with expression (4.31) as a result of dual

differentiation of equality (4.53) we will obtain

(xo) - 00 (xo)= - /1 - °(xo) (I-M-). (4.5(4)

where

By t e r pla n of tv ae(xo t y)o y.

By the replacement of the variable/alternating of integration



wy it is easy to show

M (xo. xc,,x., 'r, I ' i wo, W, iJ,. qs,

It is evident that at the given value of shape factor C value M on

the selection of synchronous phase does not depend. From expression

(4.43) and latter/last identity it follows

[ r -- i • 4.60)

Since from relationships/ratios (4.25), (4.55), (4.59) we have

- ? -( o) - -T:-(.xo) J - ,0

that hence it follows that formula (4.44) determines maximum peak

beam current at given values F. I,, independent of the value of

synchronous phase. Obtained above numerical relationship/ratio

In,:,,..3.85 I,. is correct for F-=O.15. With the decrease of shape factor

r value MA. monotonically grows/rises. In this case Al-. approaches

unity and limiting current vith given one 1, increases.



The characteristic value of current 1. (4.26) can be represented

in the form

and it on energy of particles does not depend. However, with an

increase in the energy of particles increases the longitudinal length

of clusters and falls shape factor F (4.52), which raises the

limiting value of peak current. Thus, Coulomb pushing apart has the

greatest effect on longitudinal vibrations as to the transverse ones,

with the low energies. The estimations, connected with space-charge

effect on the process of phase stability, should be carried out for

the energy of injection.
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An increase in the energy of injection makes it possible to raise the

limiting current of beam and, correspondingly, to lower the effect of

Coulomb interaction on the value of the capture region of particles

into acceleration mode.

The limiting current of beam grows/rises also with an increase

in the specific acceleration. As can easily be seen, this is

connected with the fact that an increase in the specific acceleration

with the assigned energy of injection leads to an increase in the

frequency of longitudinal vibrations.

The effect of longitudinal Coulomb pushing apart very

susceptibly/critically depends on selection of synchronous phase.

With the decrease of the absolute value of synchronous phase is

decreased the longitudinal length of clusters, which leads to an

increase in shape factor r. On the other hand, decrease P causes, a

drop in the frequency of longitudinal vibrations and corresponding
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the decrease of the characteristic value of current. Both these of

effect act in one direction and lead to the considerable decrease of

limiting current. At the low absolute values of synchronous phase

longitudinal Coulomb pushing apart can prove to be the basic reason

for the limitation of beam current in the accelerator.

The mean radius of beam R,, is proportional to the aperture of

accelerator a. As shown in S 3.7, with an increase in the wavelength

of the accelerating quotient field a/X can be within some limits

increased proportionally X. Therefore the characteristic value of

current (3.61), other conditions being equal, will increase

proportional to X1. However, from expression (4.52) it is evident

that shape factor r will in this case with an increase in the

wavelength of accelerating field grow/rise, which impedes an increase

in limiting current (4.44). For the evaluation of combined effect of

both oppositely acting effects we convert expression (4.60), after

assuming r'<i. After expanding right side (4.60) into series about to

degrees F and after being restricted by member, linear relatively

r',we will obtain

M = I--- [- + (x Xo)2 1 (4.62)

In the same time from equality (4.61) it follows

= W): I tg . 0'Y2o. (4.63)
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Thus, relation I,(I-M) on the shape factor in the first

approximation, does not depend and, therefore, change R,.X other

conditions being equal, the limiting current does not affect.

Let us assume tg . x0 0 and let us substitute

expressions (4.62), (4.63) into equality (4.44):

By the extrapolation of graphs/curves in Fig. 4.9 to k=l for limiting

values xe. x. when r=0.615 and q8 =-065 we obtain Xc= 1.43: xx -0,66.

Then

q,.' f W 2 1o* (4 64)
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A change in the wavelength of accelerating field does not directly

affect limiting current, determined by longitudinal pushing apart.

Nevertheless with an increase X appears the possibility to raise

specific acceleration, which with the conservation of energy of

injection makes it possible to raise the limiting value of current

and, therefore, to decrease space-charge effect on the capture

region. Expression (4.64) makes it possible to quantitatively

rate/estimate the effect of the selection of synchronous phase on the

maximum intensity of beam. Let us return for the numerical example,
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given at the end of S 4.2. If we decrease the synchronous phase from

37 to 20*, then with the retention/preservation/maintaining the given

values of energy of injection and specific acceleration limiting

current decreases approximately six times and longitudinal Coulomb

pushing apart it proves to be the already basic factor, which limits

beam current. Therefore any methods of focusing, which require the

considerable decrease of the absolute value of synchronous phase,

lead to a reduction in the maximally possible intensity of beam.

S 4.4. Effect of beam on accelerating field.

The acceleration of the beams of high intensity advances number

of radio engineering problems, since interaction of beam with the

field leads not only to the effect of particle acceleration, but also

to a change in the parameters of accelerating field. The accelerated

beam is grouped into the clusters, which follow with the frequency of

accelerating field. These clusters aim on the elements of the

accelerating system supplementary high-frequency the current, which

leads to a change in amplitude and phase of field. In the principle

occurs also the detuning of resonators with the load by their beam.

On the stability of amplitude and phase of accelerating voltage are

superimposed the close tolerances. Therefore the effects, connected

with the effect of intense beam on accelerating field, can lead to

the limitations of accelerated current. At the selection of the
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diagrams of the supply of the accelerating devices/equipment and

diagrams of the automatic control of the parameters of field one

should consider the effects indicated.

We will be restricted to the case when the resonance elements of

the accelerating system are supplied from the separately-excited

generator. The given calculations can be attributed to any

construction/design of the accelerating system. However, for the

concreteness is examined the accelerating system with drift tubes.

Fig. 4.13.
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Let us replace one it cut off cavity resonator by equivalent

duct/contour with the concentrated elements/cells let us examine the

capacitor/condenser of duct/contour, threaded by the bunched beam

(Fig. 4.13). To account for the high-frequency power, introduced into

the cavity resonator, with the duct/contour is connected equivalent
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source emf. It Cut off cavity resonator it is characterized by three

parameters: by natural frequency w; by the quality

p-h, (4.65)

where W',- average/mean within the period stored up energy in the

electric field, P,- high-frequency power of ohmic losses; shunt - by

the impedance

Z 2(4.66)

where V - amplitude value of stress/voltage on the accelerating

clearance. The parameters of equivalent duct/contour are connected

with these values with the relationships/ratios

C= L = ; r= . (4.67)

Le+q(t) - the charge, induced to the plates of capacitor/condenser

during this instantaneous location of the charges of beam. Regarding,

value
dq (t)

is called the induced current. The full current through the

capacitor/condenser is equal to the sum of the bias current and

induced current:

IL . C + -

dt dt

From the theorem Shockley-Ramo [128, 129] escape/ensues following

connection/communication between the induced current and the beam

current, which penetrates parallel-plate capacitor [130],
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9

laS (t) . (z. t) dz. (4.68)
0

Here g - distance between the plates of capacitor/condenser

(approximately equal to the length of the accelerating clearance):

_(:, t)- the alternating current component of beam in the function of

longitudinal coordinate and time. According to expression (4.68), the

induced current at the given moment/torque t is equal to the

value/significance average/mean at the gap length of the variable

part of the beam current at the same moment/torque t.
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Current in duct/contour IL and voltage across capacitor Uc they

satisfy the eqtuations

di (4.69)
I, = C + I8a, Mt)

di

where 3(t)- electromotive force of equivalent generator (Fig. 4.13).

the induced current in the general case - sum of two components.

First component I(t) does not depend on accelerating voltage Uc: the

second depends on amplitude and phase of accelerating voltage. In the

linear approximation/approach this dependence can be represented in

the form

lo (t) (10 ) +-I Ue + C iv . (4.70)
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Coefficients WL C.- some dimensional values whose values will be

calculated below. After the substitution of expressions (4.67),

(4.70) in equations (4.69), we will obtain

Qo 1() z ' /0

f4.71)

where

QRnz ;(4.72)
*WCn1Z

I I Z

QS - Q Rn(Q;WCnZ) (4.73)

Thus, if the induced current depends substantially on voltage across

capacitor, then duct/contour is disturbed/detuned. In this case

changes also the energy factor of duct/contour.

The induced current to calculate more simply, if we in

expression (4.68) replace the variable/alternating of integration.

Let us introduce instead of the longitudinal coordinate z new

variable/alternating

T~t- vz~t (4.74)

where v - the longitudinal velocity of particle in the clearance.

Variable r - is the moment/torque of the time when at the entrance of

the accelerating clearance appeared the particle, which achieved
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coordinate z at a given moment in time t. In S 4.2 is obtained the

distribution of prompt current along the cluster

Subsequently all phases we will count off from the moment/torque when

attains maximum voltage across capacitor

U= Vo cos Wt

in the duct/contour, not loaded with beam.
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Phase V can be represented in the form

where - phase of the unloaded field at the moment/torque when at

the entrance of clearance appears synchronous particle. Hence it is

apparent that current I depends only on variable/alternating r. Since

time t in integral (4.68) is fixed/recorded, dz--vdr and integral

(4.68) is reduced to following form [130]

'Has (t) L I- (T) l (t, c)dr. (4.75)
T 9

Value ta relates to the particle, which reaches at moment t of the

second edge of clearance z-g
a

Tg~ dz

0
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Disregarding the scatter of longitudinal velocities, let us

suppose that all particles fly into the clearance with one and the

same average speed v,, equal to the velocity of the motion of cluster

as whole. Voltage across capacitor, loaded with beam,

U,(t)= VCos()t-1). (4.76)

In the unloaded duct/contour V=V,; 0=0. In the transient

mode/conditions amplitude and the phase of stress/voltage (4.76) -

the functions of time, slow in comparison with the period of

high-frequency field. We will be restricted to nonrelativistic

approximation/approach. Particle motion in the clearance satisfies

the equation
d z eV------ Cos (Cot -- ),

moreover . with t-r. Hence

v(t, .)=voli+8U(t T)], (4 77)

where

eV-

u (t. T) =sin( -O) -sin (wr- 8).

Dimensionless parameter e can be written in the form
v

4Vz , (4.78)

where a - coefficient of clearance (1.23); U.- current energy of
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synchronous particle, expressed in the electron volts:

U.= W,
e

In the linear accelerators, as a rule, E < I. Let us calculate the

fundamental harmonic of the induced current, holding the members of

the zero and first order of the smallness of relatively low parameter

Page 291.

From equalities (4.38) it is evident that at the constant phase

density within the separatrix the amplitude of the odd harmonic of

current is small in comparison with the average/mean beam current and

with the amplitude of even harmonic. We will obtain accuracy

completely sufficient for our purposes, if let us assume that the

cluster is symmetrical relative to synchronous particle. We

approximate the law of current distribution along the cluster by the

following even function
1.,)

0 flPH 1P <- ,

0 > ,

Key: (1). with.

where I - peak beam current. The coefficients of the first three
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members of Fourier series

I () = P -- hcos ni.

in this case will take the form

/'p = (r, 1' I; 1, 1 , sin2 : J 4791

When (P=0,65 we will obtain the following values for the

average/mean current and the amplitudes of the fundamental harmonics:

Icp=wO, 2O61; I/=I,=,385h/,=0. which is close to values (4.38). The

alternating current component of the beam

l ('~ lcosto'r-qh +l~os2(r--#,) ... (4.80)

Further, if moment/torque t is assigned, then the lower limit of

integral (4.75) is determined in the first approximation, by the

equation
9

+  L u (z, Tr) dz. (4.81)
0

Transition from one argument t to the next z in function u(tT.) can be

completed, using zero approximation to equality (4.74)
t ='r+ °,

since function u(z, r) it enters into the terms, which are of the

order e. Thus,

u(z, ) = sin (o -, z sin (T-().
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After substituting latter/last expression into equation (4.81) and

after holding down/retaining terms not higher than the first order of

smallness, we will obtain

Tgg =,Tg+ EAg. (4.82)
where

V0

M 2tg = ._ - [ sin ( at - - - - ) - s in ( t - - -- 2 ) .

Finally, introducing expressions (4.77), (4.82) into integral (4.75)

and retaining the first-order terms of smallness, we have

S t

'H !O' 1- (T) d -1-~ Vo I..@)dte £0 (\ U,~ Q u(t, T) dr.
9 90

-lo (4.83)

First term does not depend on low parameter e and gives zero

approximation to the induced current

t

I 't= 0 I -.(r) dr.

V.

Second and third terms contain the members of first approximation.

Zero approximation to a resonance harmonic of the induced current is

equal

2v0 ,. ). ,o,,w ' £ , (,-,, t.
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Value

2vo

is the phase of the unloaded field in which the middle of cluster

passes the center of the accelerating clearance. This phase differs

from synchronous, since the latter is counted off from the maximum of

the loaded field (Fig. 4.14):

Tc - To

Taking into account expression for I (4.79) zero approximation is

reduced to the form

I° (t) -f In Cos (Wi -(PC); (4.84)

I. = 21 sin I (ps sin aa (4.85)

Let us determine the power, selected/taken by beam from the

high-frequency field in the clearance. For this it suffices to use

zero approximation to strength of induced current:

0
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After substituting into the integral of function (4.76), (4.84), we

have
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P, = 1I HV Cosq' (4f

or, taking into account of expression (4.79), (4.85),

P. = IpVT cos (f, (4n , w-.7

Parameter

T fsin na

in equality (4.87) - the factor of transit time. If one considers

that at the length of accelerator all particles, seized in

acceleration mode, acquire on the average the same energy, as

synchronous particle, then the power, selected/taken by beam from the

high-frequency field, taking into account one clearance will comprise

P.= [,,VTcosp,. (4.88)

Expression (4.87) differs from expression (4.88) in terms of factor

"1__'. close to unity. This factor arose in connection with the fact

that during the derivation of formula (4.87) is not considered mixing

particles at the length of accelerator, connected with the

longitudinal vibrations.

In order to obtain in sum (4.83) the resonance members of first

approximation, it is necessary to utilize the second harmonic of beam

current in expansion (4.80). The fundamental harmonic of beam

current, as it is possible to be convinced, does not give the
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contribution to the resonance terms of first approximation. After the

appropriate substitutions and integration from expression (4.83) it

follows

1 sin 2.ta
I vas l(t--10 Min wt -2f 2 c+8) (4.89)-" ' 2al
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II

it Mi

I

Fig. 4.14.
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,fter substituting into equality (4.89) for values and I,

respectively of expression (4.78), (4.79) and after passing from the

peak beam current to the average, we will obtain

I, (t) = I0(t)-+ Y IV sin2 ,.cos (at- )-Vcos2q, sin (Wt - )1.

Value

o ( sn 2--.ta ) sin 2p. (4.90)
4rY = K 2ta 2q),

has a dimensionality of conductivity. According to expression (4.76),

V cos (t-01) =U,;

dte-- ) at
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Hence we have

IaB(t) = 10 (t) - Y sin 2p,. L' cos

The parameters of beam R.. Cn are determined by expression (4.70).

Thus,

Ysin2T,,

I=1 Y cos 2q,..

Conductivity Y is proportional to the ratio of average/mean beam

current to the energy of particles and, therefore, very low value. As

shown below, usually R.>Z. From equality (4.91) it is evident that

value and C.- one order. Therefore it is possible to disregard

second term in the numerator of expression (4.72) and to obtain the

following approximation formula for the relative frequency switch of

the loaded duct/contour

AQo) YZ
W - - W cos 2.

The beam, seized into acceleration mode, decreases the natural

frequency of resonator. The equivalent energy factor of the loaded

duct/contour is determined by formula (4.73), from which it follows

Q "=I'+ YZ sin 2q),"

Let us note that quality Q,.. does not determine total losses in the

loaded duct/contour, but only that part of the losses which depends
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on voltage across capacitor and corresponds to linear processes in

the duct/contour. Basic part of the losses, connected with the

acceleration of beam, is determined by expression (4.86) and in the

first approximation, does not depend on the amplitude of accelerating

voltage, since under the assigned law of an increase in the lengths

of drift tubes Vcosp, =const.
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Generally, the concept of the energy factor of oscillatory circuit

regarding relates only to the linear processes. However, the losses

of power for acceleration (4.86) lead to the fact that the loaded

duct/contour proves to be nonlinear; so that this part of the losses

cannot be, strictly speaking, expressed through the equivalent

quality. In loaded mode/conditions Q.,>Q, since 4,<J.

Ft.' the numerical estimation let us accept the following values

of the parameters: X-2m; cos qp, = 0,8; a 0,25; U, = 70 keV;

Q=80000; shunt-impedance for the unit of the length of resonator

Z,=20 MG/m. Then Z=Z,,AX=1.6.l0' ohm. Let the average/mean beam

current be equal to 100 mA. In this case of Y=1.2.10-8 1-1;

t= -3,5. 0j-: Q , Q 1,02. Thus, the displacement of the natural

frequency of resonator and change in its quality prove to be

negligible. Frequency switch composes approximately 3.10-3 widths of
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resonance band at the level 0.7. With an increase in the energy of

the particles of the change in the natural frequency and quality

decrease. Actually/really, since Lz81, that Y=A-2 . Shunt-impedance

of section is proportional A. Consequently, YZ=A-1.

From the given numerical estimations it is evident that in the

ionic linear accelerators it is possible to disregard the members of

first approximation, who are determining the dependence of the

induced current on the stress/voltage in each accelerating clearance.

Zero approximation to induced current (4.84), (4.85) sufficiently

precise and can be used for the evaluations of effects, connected

with the effect of beam on accelerating field.

Let us return to equation (4.71), after assuming C, :- o,

Since the quality of the accelerating system usually is sufficiently

high, let us disregard/neglect also the effect of the induced

current, connected with the ohmic losses, assuming/setting

1 0 o I ! W/o

As a result we will obtain the following equation of the loaded

duct/contour

d2Uc+) dl] -I )U 0. J !Z .d1n ti cae i i at) (4.92)

~In this case it is assumed that the natural frequency of the
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accelerating system coincides with the frequency of accelerating

field.

If generator works in understressed mode/conditions (131], then

equivalent emf, introduced into the duct/contour, in the first

approximation, does not depend on the amplitude of voltage across

capacitor. Regarding, steady voltage across capacitor of the unloaded

duct/contour is equal

U"(1)=Vocos wt. (4.93)

Let us accept for simplicity, that the phase of current in the

coupling loop does not depend on the parameters of field in the

resonator.
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Equivalent emf, which corresponds to generator in the understressed

mode/conditions, must take the form

3()=--sinw. (4.94)
Q

But if generator is found in the overstressed mode/conditions, then

equality (4.94) remains valid only in the stationary unloaded state,

and in the transient processes, by the specified load of duct/contour

by beam, equivalent emf is changed depending on the current amplitude
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of voltage across capacitor. By analogy with equality (4.94) let us

accept in the general case the following expression for equivalent

emf, introduced into the duct/contour of the generator

3 M = sin (o. (4.95)
Q

Then in understressed mode/conditions Vr=Vo=const, in the overstressed

mode/conditions, according to expression (4.76), V,=Vr(V), moreover

Vr=Vo with t<0. The moment/torque of time t=0 corresponds to the

beginning of the injection of beam into the accelerator.

Let us substitute into the right side of equation (4.92)

expressions (4.84), (4.95)

ts + +(2 U -e I-Vrsin d Zl. sin( c)]. (4.96)

Into equation (4.96) enters phase yc. with which the center of cluster

is passed the middle of the accelerating clearance. With was examined

the action of the induced current on the single duct/contour, this

phase could be assigned arbitrarily. In the linear accelerator phase

'Pe is not arbitrary. In order to cable phase Vc to the

stress/voltage, which acts in the clearance of this section, it is

necessary to consider the character of the motion of clusters along

the axis of entire accelerator. If beam do zs not undergo preliminary

grouping, then clusters in the transient mode/conditions are

formed/shaped around synchronous phase i,(t). of that corresponding to
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this instantaneous value/significance of the amplitude of

accelerating voltage V(t), which changes in the process of the

establishment

V (t) cos, (P)= Vocos T. (0) = const. (4.97)

In this case coherent component of longitudinal vibrations is absent

and the centers of clusters will pass the middles of all accelerating

clearances to one and the same phase Tc. of the equal to

C () = (t) + p. (t). (4.98)

Phase qp in the process of establishment changes, in the first place,

due to a change in the amplitude of accelerating voltage V(t), and,

in the second place, due to the phase shift of this stress/voltage

relative to stress/voltage in the unloaded resonator e(t). But if

beam undergoes preliminary grouping, then to determine phases 'c(t)

for each clearance is complicated.

Page 297.

Due to a change of the synchronous phase in the process of

establishment appear coherent longitudinal vibrations. A change in

the amplitude of the loaded field leads also to the frequency switch

of longitudinal vibrations, and phase q,:,t for each clearance proves

to be the very complex function of longitudinal coordinate and time.
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For simplification in the task we will consider that the beam

does not pass buncher and clusters are formed/shaped in the linear

accelerator. In this case let us assume that the particles, not

seized into acceleration mode, do not interact with the field or they

are lost sufficiently rapidly, so that in the first approximation,

through each accelerating clearance passes only the bunched beam.

Then for calculating the transient processes it is possible to use

relationships/ratios (4.85), (4.98). The amplitude of induced current

/& (4.85) depends on synchronous phase and is function from the

amplitude of accelerating voltage. Thus, parameters Ur. IN, in the

right side of equation (4.96) are connected with the amplitude of

accelerating voltage with nonlinear dependences and they are also the

slo functions of time.

The equation of establishment (4.96) can be simplified. We

differentiate equality (4.76)

dU , d V C d @ _ ( V sin - t

Since by equality (4.76) instead of one unknown function U,(t) are

introduced two the unknowns V(t), 9(t), on the variable/alternating

V, 0 it is possible to apply one arbitrary condition which let us

select as follows:
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dVdOWt-_ COS (Wt- 6) -; V qisin (wt- H) I (499)

Then it remains

dic

Let us substitute function U, (4.76) in equation (4.96). Taking into

account condition (4.99) we will obtain

dY dO
-- .sin (Wt - ) -- V -F cos ((t -)

WIVr

- Sin a - -!- ZI, sin (w - (p) V sin (wt- 4). (4.100)

Further, let us solve equations (4.99), (4.100) algebraic overally

unknowns .- , V-@ Let us arrive at the system of two first-order

equations. This system, generally speaking, is not simpler than

initial differential equation (4.96). However, now it is possible to

use the "s.owness" of functions V, e.
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Namely, let us integrate piecemeal system of eqiutions of

first-order, solved relative to derivatives, for the period of high

frequency. All slow functions we will consider constants in the

period 2:/w and let us remove them from under the integral signs. As

a result we will obtain the following shortened equations of
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establishment [132, 23]:

dV (V , cos 6-ZI. Cos F - V).

de _ (4.101)
dt w -- (V, sin f3 ZI, sin q).

When generator is disconnected from the duct/contour and the latter

is not loaded, then

dV

Hence it is apparent that value

TO 2  (4.102)

is time constant of a field slope in the unloaded accelerating system

after the cutoff/disconnection of high-frequency oscillator.

Are of interest two limiting cases. If the duration of beam

substantially exceeds the time of the establishment of field, then

the acceleration of basic part of the beam occurs at the steady-state

values of amplitude end phase of field, that correspond to the loaded

mode/conditions. We deal, actually, concerning acceleration mode of

steady beam. In this mode/conditions computed value of synchronous

phase must be established/installed with the stationary amnplitude of

field in the resonator, loaded with beam. In the second case the

duration of beam is considerably less than the time of the

establishment of field. Acceleration occurs due to the energy,
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preliminarily accumulated in the resonator unless are taken special

measures for power boosting of oscillators of the period of

acceleration. The second case corresponds to the pulsed operation of

accelerator and is utilized in essence in the linear

accelerator-injectors. In the pulsed accelerators computed value of

synchronous phase is established/installed with the amplitude of

field, which corresponds to the unloaded resonator. Amplitude and

phase of field for the time of the passage of pulse beam must remain

within the limits of the assigned close tolerances.

Let us examine, first of all, steady loaded state. In steady

state
dV d@

and conservative values of amplitude and phase of accelerating

voltage V, e satisfy the equations

Vr sin0 = -ZI1 sin 4,;
VrCO8V+ZuCOSPa.(4.103)Vr COS E = V + ZI, COS 4-.

In these equations I,. p.- conservative values of the amplitude of

the induced current and synchronous phase.
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After dividing equations (4.103) on V and after considering
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relationships/ratios (4.66), (4.86), we will obtain

PI

where P.- power, spent on the acceleration of the beam: P,, the

power of high-frequency losses in copper in steady loaded state.

Hence

11r" 2 P P',.. . t = f - I .. .. ;i. I( h
gi. PIU2P

-P,

Since ,,<O. that 0>0; high-frequency field in the loaded

resonator lags on the phase relative to field in the unloaded

resonator. From equation (4.104) it follows that the stationary

amplitude of stress/voltage in the loaded clearance V is

unambiguously connected with relation P.P., since, according to

relationships/ratios (4.97), tg,;- single-valued function V.

Equalities (4.66), (4.86) give

P a 2z ' (4.106

or

P, z

= _V / 1 O (f".

Relation P/P. in each section of resonator in the first

approximation, does not depend on energy of particles, in view of the

fact that Zz13; V=6; I., as follows from formula (4.85), with an

accuracy to the constancy of the factor of transit time it remains

identical in all clearances. Thus, amplitude and phase shift of the



DOC = 82105214 PAGEOf2-

loaded field is approximately identical in all sections of resonator.

The load of high-frequency field with beam current does not lead to

the "inclination/slope" of field, if only are retained the

average/mean current of the accele ated beam and the linear value of

shunt-impedance along the axis of resonator.

The obtained above stationary relationships/ratios remain valid

and in the case of preliminary beam bunching. If beam passes through

the buncher, then it is necessary that the clusters at the entrance

of linear accelerator would be seized into acceleration mode in

amplitude and phase of field, that correspond to the unloaded

mode/conditions. From relationship/ratio (4.105) it follows that this

condition is satisfied always. Actually/really, according to

expression (4.105), with any value of load 0< 4, Bunching

parameters are such, that the centers of clusters pass the middle of

the first clearance to phase T, relative to the loaded field;

relative to the unloaded field (in the constant phase of the

oscillations of stress/voltage in the buncher) the centers of

clusters are passed to the phase

e= , <0.
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This inequality provides the capture of clusters into acceleration
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mode in the unloaded field, since the right boundary of the region of

capture exists q,, = . If buncher is supplied by the high-frequency

energy, directly abstracted/removed from the first resonator, then

latter/last inequality is improved, since disappears parasitic phase

displacement e between the fields in buncher and resonator of

accelerator.

Let us examine in more detail case Vr = Vo = const. Let us

substitute relation (4.106) in equation (4.104). Let us arrive at the

biquadratic equation

V4 - (V-4ZPn) V'- Zn 0.

Hence

0. . -, 2 \ . (4.107)

Thus, if carried out is the condition

2 -2ZP. > (4.10)
T ~CoS s 418

then there are two values for the stationary amplitude. The presence

of two values for the stationary amplitude in the loaded

mode/conditions is explained by the fact that the power, taken away

in field by the beam, seized into the acceleration, does not depend

on the amplitude of field; therefore the loaded system proves to be

nonlinear. As shown subsequently, the upper value/significance of

amplitude is stable, and lower is unstable. In proportion to an
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increase in value 2Mi both roots (4.107) converge, moreover stable

amplitude decreases, and unstable increases. With
V22P (4.109)
.2 Cos T

both amplitudes they pour at metastable point, and biquadratic

equation has the multiple root, which corresponds

V" 2 (1+ +cos 4p,)"

Thus, any stable stationary amplitudes satisfy the condition

/t Vo- Y< 2 (1 + cos 4p,).(410\ (4. I1I0)

But, according to expression (4.106),

Pn . 2ZP, / Vo "

Taking into account expressions (4.109), (4.110) we have

P,-Pi- < cos ,. (4.111I)
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This relationship/ratio between the power, spent on the acceleration,

and the power of losses in copper determines the condition for

existence of stable stationary amplitude in the resonator, loaded

with the steady beam (during the understressed mode/conditions

oscillator). From formula (4.105) and condition (4.111) it follows

tgo<t-'
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so that phase displacement of the loaded field of that of relatively

unloaded does not exceed - q. Latter/last inequality substantially

more precisely formulates formula (4.105), but it is correct only

when V, \. const.

Upon the acceleration of the beam of high intensity condition

(4ll) can prove to be disturbed. In that case stable stationary

field will exist only during the overstressed mode/conditions of

oscillator.

The obtained results, which relate to the stationary loaded

field, have simple geometric interpretation. Let us multiply the

first equation of establishment (4.101) by the instantaneous value of

the established/installed amplitude V

--jt-V'-I d ° irc', "0 H -Zl,,V Cos V-- j . 4.112)

But
W" CV

s
3

is average in the period the value/significance of the energy,

accumulated in the electric field, and

P"= 1" l.COST,

there is the power, spent on the acceleration of beam. Let us replace

the instantaneous value of the amplitude of stress/voltage in

equation (4.112) with the medium energy, inclined in accelerating
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field, and will place cos 9=I. After considering relationships/ratios

(4.67) and after designating

we will obtain

Formula (4.113) is the equation of the energy balance in the

resonator. On the left side stands rate of change in the energy of

accelerating field, while in the right - difference between the

power, given up by the oscillator

Pr= A, W.

and the sum of the losses to the acceleration and of losses in

copper. The process of establishment is conveniently examined on

plane W,-
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Fig. 4.15 gives the diagrams of the establishment of field. Straight

lines correspond to the law of an increase in the high-frequency

losses, parabola - to law of an increase in the power, given up by

oscillator in the case Ar = const (understressed mode/conditions). The

abscissa of the point of intersection of parabola with straight line

1 is equal to the steady-state value of the medium energy of unloaded

field V. The load, introduced by beam, leads to the parallel
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displacement by the straight line of high-frequency losses upward. To

case (4.108) correspond straight/direct 2; it is easy to see that the

upper state of equilibrium is stable, and lower is unstable. If

oscillator does not cover/coat total high-frequency losses, then

condition (4.108) is not satisfied and the steady states of field are

absent (straight line 3). For the compensation for total power losses

of oscillator must be raised; parameter Ar in this case grows/rises.

However, if losses to the acceleration are too great, so that

condition (4.111) is not satisfied, then the assigned stationary

field will prove to be unstable (parabola, carried out by dotted

line). The stability of the assigned stationary field can be then it

is provided only in the overstressed mode/conditions (dot-dash

curve).

Let us examine the pulsed mode of accelerator. For the analysis

of pulsed operation more conveniently to switch over to the equation

of the establishment of field. The medium energy, accumulated in

accelerating field, is connected with the amplitude of field on the

axis of accelerator with the general/common/total relationship/ratio

C= aEs. (4.114)

Coefficient a. is determined by the frequency of accelerating field,

by transmission mode and by geometry of the accelerating

devices/equipment, and also by parameters of dielectric, if the

latter is in the resonance volume of the accelerating elements/cells.
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Fig. 4.15.

Page 303.

In view Pn--const the equation of the establishment of field is

nonlinear:
dE Ar (E) Pn
dt 2A E - 1. (4.115)

Let prior to the beginning of injection in the axis of resonator be

established stationary unloaded field E=E, This value/significance

corresponds to the operational conditions of acceleration. Upon the

injection of beam the equilibrium is disrupted; however, for the

transit time of the beam with a duration of To a relative field slope
E (t)-E,

must remain within the limits allowances for the nominal amplitude.
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Since |xt<<l, we can be restricted to the linear section of the

full-load saturation curve of oscillator near the operating point

.,A (E ) - .4,. (E A) _ A r E

After assuming Wxl<<l, we will obtain the following equation for a

relative field slope

axP. 1  X P".=,. _ - I -- * -- , - @- (4.116)
-it To V N

where r. - time constant of a field slope (4.102), and dimensionless

parameter v, is equal to
Q JA 1 .(,)

Vr= --- Q .4,-- .r a dE*-t

and it is determined by the inclination/slope of the full-load

saturation curve of oscillator. In the understressed mode/conditions

of oscillator v,=0: in overstressed mode/conditions vr>O. moreover,

as a rule v' I. Since x(0)=0, the equation (4.116) has the following

solution

X M [ -li-e 1\ %I ] (4.117)

A field slope near the working value depends substantially on the

full-load saturation curve of oscillator.

Le4 Vr = 0. Then when r .<T o we have

x (t) P11~ 1.
?OPM

But, according to expressions (4.65), (4.102)
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P~o= 2Wz3.

On the other hand,

Pa,= .

where W.- energy, selected/taken by beam from accelerating field.

Page 304.

Therefore toward the end of the impulse/momentum/pulse of ion current

a relative field slope comprises

A E W,
i ... E w,(4.1181

Ea 2U['

The ratio of the energy, selected/taken by beam, to the medium

energy, accumulated in accelerating field, must not exceed double the

allowance for the nominal value of accelerating field.

Let now v,> 0 . If "r is small and the condition
P,

I + r- P,-

is satisfied, then remains valid relationship/ratio (4.118). B-At if

v,> 1, then a relative field slope remains small independent of the

duration of beam and comprises

AE P,E, v.P,
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In this case it is assumed that power loss for the acceleration of

the same order as high-frequency power losses in copper or less than

the latter. The case of a deep cooling of the accelerating system

requires separate examination.
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